PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks

被引:29
作者
Assens, Marc [1 ]
Giro-i-Nieto, Xavier [2 ]
McGuinness, Kevin [1 ]
O'Connor, Noel E. [1 ]
机构
[1] Dublin City Univ, Dublin 9, Ireland
[2] Univ Politecn Cataluna, Barcelona 08034, Catalonia, Spain
来源
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V | 2019年 / 11133卷
基金
爱尔兰科学基金会;
关键词
Saliency; Scanpath; Adversarial training; GAN; cGAN; MODEL;
D O I
10.1007/978-3-030-11021-5_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce PathGAN, a deep neural network for visual scanpath prediction trained on adversarial examples. A visual scanpath is defined as the sequence of fixation points over an image defined by a human observer with its gaze. PathGAN is composed of two parts, the generator and the discriminator. Both parts extract features from images using off-the-shelf networks, and train recurrent layers to generate or discriminate scanpaths accordingly. In scanpath prediction, the stochastic nature of the data makes it very difficult to generate realistic predictions using supervised learning strategies, but we adopt adversarial training as a suitable alternative. Our experiments prove how PathGAN improves the state of the art of visual scanpath prediction on the iSUN and Salient360! datasets.
引用
收藏
页码:406 / 422
页数:17
相关论文
共 46 条
[1]   Persistence in eye movement during visual search [J].
Amor, Tatiana A. ;
Reis, Saulo D. S. ;
Campos, Daniel ;
Herrmann, Hans J. ;
Andrade, Jose S., Jr. .
SCIENTIFIC REPORTS, 2016, 6
[2]  
[Anonymous], 2018, SIGNAL PROCESS IMAGE
[3]  
[Anonymous], 2014, CLASS PROJECT STANFO
[4]  
[Anonymous], ARXIV160903126
[5]   SaltiNet: Scan-path Prediction on 360 Degree Images using Saliency Volumes [J].
Assens, Marc ;
Giro-i-Nieto, Xavier ;
McGuinness, Kevin ;
O'Connor, Noel E. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2331-2338
[6]  
Borji A, 2012, PROC CVPR IEEE, P438, DOI 10.1109/CVPR.2012.6247706
[7]  
Bylinskii Z., 2016, ARXIV161001563
[8]   Where Should Saliency Models Look Next? [J].
Bylinskii, Zoya ;
Recasens, Adria ;
Borji, Ali ;
Oliva, Aude ;
Torralba, Antonio ;
Durand, Fredo .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :809-824
[9]  
Cerf M., 2008, Advances in Neural Information Processing Systems, P241
[10]  
Cornia M, 2016, INT C PATT RECOG, P3488, DOI 10.1109/ICPR.2016.7900174