A generalization of Miyachi's theorem

被引:13
作者
Daher, Radouan [1 ]
Kawazoe, Takeshi [2 ]
Mejjaoli, Hatem [3 ]
机构
[1] Univ Hassau 2, Fac Sci & Informat, Dept Math, Casablanca, Morocco
[2] Keio Univ Fujisawa, Dept Math, Kanagawa 2528520, Japan
[3] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
基金
日本学术振兴会;
关键词
Hardy's theorem; Miyachi's theorem; Radon transform; Dunkl transform; Chebli-Trimeche transform;
D O I
10.2969/jmsj/06120551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Hardy theorem on R; which asserts f and the Fourier transform of f cannot both be very small, was generalized by Miyachi in terms of L-1+L-infinity and log(+)-functions. In this paper we generalize Miyachi's theorem for R-d and then for other generalized Fourier transforms such as the Chebli-Trimeche and the Dunkl transforms.
引用
收藏
页码:551 / 558
页数:8
相关论文
共 12 条
[1]  
Bloom WR., 1995, HARMONIC ANAL PROBAB, V20
[2]  
Bonami A, 2003, REV MAT IBEROAM, V19, P23
[3]  
CHOUCHANE F, 2003, J ANAL APPL, V1, P387
[4]  
CHOUCHENE F, 2007, MIYACHIS THEOREM DUN
[5]  
COWLING M, 1983, LECT NOTES MATH, V992, P143
[6]  
Daher R., 2006, Hiroshima J Math, V36, P331, DOI [10.32917/hmj/1171377076, DOI 10.32917/HMJ/1171377076]
[7]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[8]  
Hardesty DM, 2002, J ADVERTISING, V31, P1
[9]  
Miyachi A., 1997, HARM AN SEM IZ SHIZ, P44
[10]   The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual [J].
Trimèche, K .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2001, 12 (04) :349-374