A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [41] Variable Selection Via Thompson Sampling
    Liu, Yi
    Rockova, Veronika
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 287 - 304
  • [42] Group variable selection via SCAD-L2
    Zeng, Lingmin
    Xie, Jun
    STATISTICS, 2014, 48 (01) : 49 - 66
  • [43] SPARSE COVARIANCE THRESHOLDING FOR HIGH-DIMENSIONAL VARIABLE SELECTION
    Jeng, X. Jessie
    Daye, Z. John
    STATISTICA SINICA, 2011, 21 (02) : 625 - 657
  • [44] A sparse additive model for high-dimensional interactions with an exposure variable
    Bhatnagar, Sahir R.
    Lu, Tianyuan
    Lovato, Amanda
    Olds, David L.
    Kobor, Michael S.
    Meaney, Michael J.
    O'Donnell, Kieran
    Yang, Archer Y.
    Greenwood, Celia M. T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [45] Sparse modeling for climate variable selection across trophic levels
    Grames, Eliza M.
    Forister, Matthew L.
    ECOLOGY, 2024, 105 (03)
  • [46] Variable selection for varying-coefficient models with the sparse regularization
    Matsui, Hidetoshi
    Misumi, Toshihiro
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 43 - 55
  • [47] Regularization and variable selection in Heckman selection model
    Ogundimu, Emmanuel O.
    STATISTICAL PAPERS, 2022, 63 (02) : 421 - 439
  • [48] A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty
    Wang, Wentao
    Liang, Jiaxuan
    Liu, Rong
    Song, Yunquan
    Zhang, Min
    MATHEMATICS, 2022, 10 (16)
  • [49] Variable selection in generalized random coefficient autoregressive models
    Zhao, Zhiwen
    Liu, Yangping
    Peng, Cuixin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [50] Robust variable selection based on the random quantile LASSO
    Wang, Yan
    Jiang, Yunlu
    Zhang, Jiantao
    Chen, Zhongran
    Xie, Baojian
    Zhao, Chengxiang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (01) : 29 - 39