A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [31] Bi-level variable selection via adaptive sparse group Lasso
    Fang, Kuangnan
    Wang, Xiaoyan
    Zhang, Shengwei
    Zhu, Jianping
    Ma, Shuangge
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2750 - 2760
  • [32] Group sparse sufficient dimension reduction: a model-free group variable selection method
    Cai, Kaida
    Lu, Xuewen
    Shen, Hua
    COMPUTATIONAL STATISTICS, 2024,
  • [33] Forward variable selection for random forest models
    Velthoen, Jasper
    Cai, Juan-Juan
    Jongbloed, Geurt
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (13) : 2836 - 2856
  • [34] A note on variable selection in functional regression via random subspace method
    Smaga, Lukasz
    Matsui, Hidetoshi
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (03): : 455 - 477
  • [35] A note on variable selection in functional regression via random subspace method
    Łukasz Smaga
    Hidetoshi Matsui
    Statistical Methods & Applications, 2018, 27 : 455 - 477
  • [36] Variable Selection in the Cox Regression Model with Covariates Missing at Random
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    BIOMETRICS, 2010, 66 (01) : 97 - 104
  • [37] Model detection and variable selection for mode varying coefficient model
    Ma, Xuejun
    Du, Yue
    Wang, Jingli
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (02): : 321 - 341
  • [38] Variable selection in sparse GLARMA models
    Gomtsyan, Marina
    Levy-Leduc, Celine
    Ouadah, Sarah
    Sansonnet, Laure
    Blein, Thomas
    STATISTICS, 2022, 56 (04) : 755 - 784
  • [39] Adaptive Posterior Mode Estimation of a Sparse Sequence for Model Selection
    Sardy, Sylvain
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (04) : 577 - 601
  • [40] Integrative variable selection via Bayesian model uncertainty
    Quintana, M. A.
    Conti, D. V.
    STATISTICS IN MEDICINE, 2013, 32 (28) : 4938 - 4953