A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [21] Sparse vertex discriminant analysis: Variable selection for biomedical classification applications
    Landeros, Alfonso
    Ko, Seyoon
    Chang, Jack Z.
    Wu, Tong Tong
    Lange, Kenneth
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 206
  • [22] Variable selection using random forests
    Genuer, Robin
    Poggi, Jean-Michel
    Tuleau-Malot, Christine
    PATTERN RECOGNITION LETTERS, 2010, 31 (14) : 2225 - 2236
  • [23] A new variable selection approach using Random Forests
    Hapfelmeier, A.
    Ulm, K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 60 : 50 - 69
  • [24] Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response
    Huang, Xianzheng
    BIOMETRICS, 2009, 65 (02) : 361 - 368
  • [25] Bayesian variable selection for globally sparse probabilistic PCA
    Bouveyron, Charles
    Latouche, Pierre
    Mattei, Pierre-Alexandre
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3036 - 3070
  • [26] Learning sparse gradients for variable selection and dimension reduction
    Ye, Gui-Bo
    Xie, Xiaohui
    MACHINE LEARNING, 2012, 87 (03) : 303 - 355
  • [27] Prediction in the two-way random-effect mode with heteroskedasticity
    Kouassi, Eugene
    Kymn, Kern O.
    JOURNAL OF FORECASTING, 2008, 27 (05) : 451 - 463
  • [28] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Yang, Aijun
    Tian, Yuzhu
    Li, Yunxian
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2020, 35 (01) : 245 - 258
  • [29] A link-free sparse group variable selection method for single-index model
    Zeng, Bilin
    Wen, Xuerong Meggie
    Zhu, Lixing
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (13) : 2388 - 2400
  • [30] Variable selection in multivariate linear models for functional data via sparse regularization
    Hidetoshi Matsui
    Yuta Umezu
    Japanese Journal of Statistics and Data Science, 2020, 3 : 453 - 467