A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [1] A random-effect model approach for group variable selection
    Lee, Sangin
    Pawitan, Yudi
    Lee, Youngjo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 89 : 147 - 157
  • [2] The use of random-effect models for high-dimensional variable selection problems
    Kwon, Sunghoon
    Oh, Seungyoung
    Lee, Youngjo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 401 - 412
  • [3] Fitting via alternative random-effect models
    Lee, Y
    Nelder, JA
    STATISTICS AND COMPUTING, 2006, 16 (01) : 69 - 75
  • [4] Fitting via alternative random-effect models
    Youngjo Lee
    John A. Nelder
    Statistics and Computing, 2006, 16 : 69 - 75
  • [5] Variable selection in additive models via hierarchical sparse penalty
    Wen, Canhong
    Chen, Anan
    Wang, Xueqin
    Pan, Wenliang
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (01): : 162 - 194
  • [6] Sparse oracle inequalities for variable selection via regularized quantization
    Levrard, Clement
    BERNOULLI, 2018, 24 (01) : 271 - 296
  • [7] Sparse linear mixed model selection via streamlined variational Bayes
    Degani, Emanuele
    Maestrini, Luca
    Toczydlowska, Dorota
    Wand, Matt P.
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5182 - 5225
  • [8] Sparse Extended Redundancy Analysis: Variable Selection via the Exclusive LASSO
    Kok, Bing Cai
    Choi, Ji Sok
    Oh, Hyelim
    Choi, Ji Yeh
    MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (03) : 426 - 446
  • [9] Random-effect models with singular precision
    Lee, Woojoo
    Lee, Youngjo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (12) : 2128 - 2141
  • [10] Probing for Sparse and Fast Variable Selection with Model-Based Boosting
    Thomas, Janek
    Hepp, Tobias
    Mayr, Andreas
    Bischl, Bernd
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017