SELFISHMIGRATE: A Scalable Algorithm for Non-clairvoyantly Scheduling Heterogeneous Processors

被引:25
作者
Im, Sungjin [1 ]
Kulkarni, Janardhan [2 ]
Munagala, Kamesh [2 ]
Pruhs, Kirk [3 ]
机构
[1] Univ Calif, Dept EECS, Merced, CA 95344 USA
[2] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[3] Univ Pittsburgh, Dept Comp Sci, Pittsburgh, PA 15260 USA
来源
2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014) | 2014年
基金
美国国家科学基金会;
关键词
TOTAL FLOW TIME; SPEED;
D O I
10.1109/FOCS.2014.63
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the classical problem of minimizing the total weighted flow-time for unrelated machines in the online non-clairvoyant setting. In this problem, a set of jobs J arrive over time to be scheduled on a set of M machines. Each job j has processing length p(j), weight w(j), and is processed at a rate of l(ij) when scheduled on machine i. The online scheduler knows the values of w(j) and l(ij) upon arrival of the job, but is not aware of the quantity p(j). We present the first online algorithm that is scalable ((1+epsilon)-speed O(1/(2)(epsilon))-competitive for any constant epsilon > 0) for the total weighted flow-time objective. No non-trivial results were known for this setting, except for the most basic case of identical machines. Our result resolves a major open problem in online scheduling theory. Moreover, we also show that no job needs more than a logarithmic number of migrations. We further extend our result and give a scalable algorithm for the objective of minimizing total weighted flow-time plus energy cost for the case of unrelated machines. In this problem, each machine can be sped up by a factor of f(i)(-1)(P) when consuming power P, where f(i) is an arbitrary strictly convex power function. In particular, we get an O(gamma(2))-competitive algorithm when all power functions are of form s(gamma). These are the first non-trivial non-clairvoyant results in any setting with heterogeneous machines. The key algorithmic idea is to let jobs migrate selfishly until they converge to an equilibrium. Towards this end, we define a game where each job's utility which is closely tied to the instantaneous increase in the objective the job is responsible for, and each machine declares a policy that assigns priorities to jobs based on when they migrate to it, and the execution speeds. This has a spirit similar to coordination mechanisms that attempt to achieve near optimum welfare in the presence of selfish agents (jobs). To the best our knowledge, this is the first work that demonstrates the usefulness of ideas from coordination mechanisms and Nash equilibria for designing and analyzing online algorithms.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 34 条
[1]   Energy-Efficient Algorithms for Flow Time Minimization [J].
Albers, Susanne ;
Fujiwara, Hiroshi .
ACM TRANSACTIONS ON ALGORITHMS, 2007, 3 (04)
[2]   Energy-Efficient Algorithms [J].
Albers, Susanne .
COMMUNICATIONS OF THE ACM, 2010, 53 (05) :86-96
[3]  
Anand S., 2012, P 23 ANN ACM SIAM S, P1228, DOI 10.1137/1.9781611973099.97
[4]  
[Anonymous], 2014, P 25 ANN ACM SIAM S
[5]  
[Anonymous], 2004, Handbook of Scheduling-Algorithms, Models, and Performance Analysis, DOI DOI 10.1201/9780203489802.CH15
[6]   Server scheduling in the weighted lp norm [J].
Bansal, N ;
Pruhs, K .
LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 :434-443
[7]  
Bansal N, 2010, LECT NOTES COMPUT SC, V6198, P324, DOI 10.1007/978-3-642-14165-2_28
[8]  
Bansal N, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1238
[9]   SPEED SCALING FOR WEIGHTED FLOW TIME [J].
Bansal, Nikhil ;
Pruhs, Kirk ;
Stein, Cliff .
SIAM JOURNAL ON COMPUTING, 2009, 39 (04) :1294-1308
[10]   Nonclairvoyant scheduling to minimize the total flow time on single and parallel machines [J].
Becchetti, L ;
Leonardi, S .
JOURNAL OF THE ACM, 2004, 51 (04) :517-539