Item Category Aware Conditional Restricted Boltzmann Machine Based Recommendation

被引:16
作者
Liu, Xiaomeng [1 ,2 ]
Ouyang, Yuanxin [1 ,2 ]
Rong, Wenge [2 ,3 ]
Xiong, Zhang [2 ,3 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[3] Beihang Univ Shenzhen, Res Inst, Shenzhen, Peoples R China
来源
NEURAL INFORMATION PROCESSING, PT II | 2015年 / 9490卷
关键词
Recommendation system; Collaborative filtering; Conditional restricted boltzmann machine; Item category;
D O I
10.1007/978-3-319-26535-3_69
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Though Collaborative Filtering is one of most effective recommendation technique, the problem of dealing sparsity brings traditional collaborative filtering recommendation systems great challenge. In this paper, we propose an improved Item Category aware Conditional Restricted Boltzmann Machine Frame model for recommendation by integrating item category information as the conditional layer, aiming to optimise the model parameters, so as to get better recommendation efficiency. Experimental studies on the standard benchmark datasets of MovieLens 100 k and MovieLens 1M have shown its potential in improving recommendation accuracy.
引用
收藏
页码:609 / 616
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 2007, P 24 INT C MACHINE L
[2]  
[Anonymous], 2013, P INT C MACH LEARN R
[3]  
Grcar M, 2006, LECT NOTES ARTIF INT, V4198, P58
[4]  
Hinton G. E., 2012, NEURAL NETWORKS TRIC, V2nd, P599
[5]   Training products of experts by minimizing contrastive divergence [J].
Hinton, GE .
NEURAL COMPUTATION, 2002, 14 (08) :1771-1800
[6]  
Kaya Hamza, 2010, Proceedings of the Seventh International Conference on Information Technology: New Generations (ITNG 2010), P249, DOI 10.1109/ITNG.2010.26
[7]  
kumar Bokde D, 2015, ARXIV150307475 CORR
[8]   Scalable learning of probabilistic latent models for collaborative filtering [J].
Langseth, Helge ;
Nielsen, Thomas D. .
DECISION SUPPORT SYSTEMS, 2015, 74 :1-11
[9]  
Ouyang YX, 2014, LECT NOTES COMPUT SC, V8836, P284, DOI 10.1007/978-3-319-12643-2_35
[10]  
Takács G, 2009, J MACH LEARN RES, V10, P623