Deep learning-based classifier of diffuse large B-cell lymphoma cell-of-origin with clinical outcome

被引:2
作者
Viswanathan, Aswathi [1 ]
Kundal, Kavita [2 ]
Sengupta, Avik
Kumar, Ambuj [3 ]
Kumar, Keerthana Vinod [3 ]
Holmes, Antony B. [4 ]
Kumar, Rahul [5 ,6 ]
机构
[1] Amrita Vishwa Vidyapeetham, Coimbatore, India
[2] Indian Inst technol, Computat Genom, Kandi, India
[3] Indian Inst Technol Hyderabad, Kandi, India
[4] Columbia Univ, Inst Canc Genet, New York, NY USA
[5] Indian Inst Technol Hyderabad, Bioinformat, Kandi, India
[6] Indian Inst Technol Hyderabad, Dept Biotechnol, BT313,BTBM Bldg, Kandi 50228, Telangana, India
关键词
DLBCL; cell-of-origin; multilayer perceptron; deep learning; clinical outcome; RANDOMIZED CONTROLLED-TRIAL; GENE-EXPRESSION; ELDERLY-PATIENTS; CHEMOTHERAPY; PREDICTION; RITUXIMAB; SURVIVAL; SUBTYPE; CHOP;
D O I
10.1093/bfgp/elac038
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Diffuse large B-cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma with poor response to R-CHOP therapy due to remarkable heterogeneity. Based on gene expression, DLBCL cases were divided into two subtypes, i.e. ABC and GCB, where ABC subtype is associated with poor outcomes. Due to its association with clinical outcome, this classification, also known as cell-of-origin (COO), is an efficient way to predict the response to R-CHOP therapy. Previous COO classification methods have some shortcomings, e.g. limited number of samples in the training dataset. These shortcomings challenge the robustness of methods and make it difficult to implicate these methods at clinical level. To overcome the shortcomings of previous methods, we developed a deep learning-based classifier model on a cohort of 381 DLBCL patients using expression data of 20 genes. We implemented multilayer perceptron (MLP) to train deep learning-based classifier, named MLP-COO. MLP-COO achieved accuracy of 99.70% and 94.70% on training and testing datasets, respectively, with 10-fold cross-validation. We also assessed its performance on an independent dataset of 294 DLBCL patients. On independent dataset, we achieved an accuracy of 95.90% with MCC of 0.917. To show its broader applicability, we used this classifier to predict the clinical outcome using survival data from two large cohorts of DLBCL patients. In survival analysis, MLP-COO recapitulates the survival probabilities of DLBCL patients based on their COO in both cohorts. We anticipate that MLP-COO model developed in this study will benefit in the accurate COO prediction of DLBCL patients and their clinical outcomes.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 32 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma [J].
Arthur, Sarah E. ;
Jiang, Aixiang ;
Grande, Bruno M. ;
Alcaide, Miguel ;
Cojocaru, Razvan ;
Rushton, Christopher K. ;
Mottok, Anja ;
Hilton, Laura K. ;
Lat, Prince Kumar ;
Zhao, Eric Y. ;
Culibrk, Luka ;
Ennishi, Daisuke ;
Jessa, Selin ;
Chong, Lauren ;
Thomas, Nicole ;
Pararajalingam, Prasath ;
Meissner, Barbara ;
Boyle, Merrill ;
Davidson, Jordan ;
Bushell, Kevin R. ;
Lai, Daniel ;
Farinha, Pedro ;
Slack, Graham W. ;
Morin, Gregg B. ;
Shah, Sohrab ;
Sen, Dipankar ;
Jones, Steven J. M. ;
Mungall, Andrew J. ;
Gascoyne, Randy D. ;
Audas, Timothy E. ;
Unrau, Peter ;
Marra, Marco A. ;
Connors, Joseph M. ;
Steidl, Christian ;
Scott, David W. ;
Morin, Ryan D. .
NATURE COMMUNICATIONS, 2018, 9
[3]   S1PR2 deficiency in DLBCL: a FOXy connection [J].
Baldari, Cosima T. .
BLOOD, 2016, 127 (11) :1380-1381
[4]   An intuitive graphical visualization technique for the interrogation of transcriptome data [J].
Bushati, Natascha ;
Smith, James ;
Briscoe, James ;
Watkins, Christopher .
NUCLEIC ACIDS RESEARCH, 2011, 39 (17) :7380-7389
[5]   Diffuse large B-cell lymphoma: R-CHOP failure-what to do? [J].
Coiffier, Bertrand ;
Sarkozy, Clementine .
HEMATOLOGY-AMERICAN SOCIETY OF HEMATOLOGY EDUCATION PROGRAM, 2016, :366-378
[6]   Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1 [J].
Dekker, Joseph D. ;
Park, Daechan ;
Shaffer, Arthur L., III ;
Kohlhammer, Holger ;
Deng, Wei ;
Lee, Bum-Kyu ;
Ippolito, Gregory C. ;
Georgiou, George ;
Iyer, Vishwanath R. ;
Staudt, Louis M. ;
Tucker, Haley O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :E577-E586
[7]   Double-Hit Gene Expression Signature Defines a Distinct Subgroup of Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma [J].
Ennishi, Daisuke ;
Jiang, Aixiang ;
Boyle, Merrill ;
Collinge, Brett ;
Grande, Bruno M. ;
Ben-Neriah, Susana ;
Rushton, Christopher ;
Tang, Jeffrey ;
Thomas, Nicole ;
Slack, Graham W. ;
Farinha, Pedro ;
Takata, Katsuyoshi ;
Miyata-Takata, Tomoko ;
Craig, Jeffrey ;
Mottok, Anja ;
Meissner, Barbara ;
Saberi, Saeed ;
Bashashati, Ali ;
Villa, Diego ;
Savage, Kerry J. ;
Sehn, Laurie H. ;
Kridel, Robert ;
Mungall, Andrew J. ;
Marra, Marco A. ;
Shah, Sohrab P. ;
Steidl, Christian ;
Connors, Joseph M. ;
Gascoyne, Randy D. ;
Morin, Ryan D. ;
Scott, David W. .
JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (03) :190-+
[8]   Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma:: A study by the groupe d'Etude des lymphomes de l'adulte [J].
Feugier, P ;
Van Hoof, A ;
Sebban, C ;
Solal-Celigny, P ;
Bouabdallah, R ;
Fermé, C ;
Christian, B ;
Lepage, E ;
Tilly, H ;
Morschhauser, F ;
Gaulard, P ;
Salles, G ;
Bosly, A ;
Gisselbrecht, C ;
Reyes, F ;
Coiffier, B .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (18) :4117-4126
[9]  
Flori M, 2016, BLOOD, V127, P1438, DOI [10.1182/blood-2015-08662635, 10.1182/blood-2015-08-662635]
[10]   In silico approaches for designing highly effective cell penetrating peptides [J].
Gautam, Ankur ;
Chaudhary, Kumardeep ;
Kumar, Rahul ;
Sharma, Arun ;
Kapoor, Pallavi ;
Tyagi, Atul ;
Raghava, Gajendra P. S. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2013, 11