Parisian ruin over a finite-time horizon

被引:19
作者
Debicki, Krzysztof [1 ]
Hashorva, Enkelejd [2 ]
Ji LanPeng [2 ]
机构
[1] Univ Wroclaw, Inst Math, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Univ Lausanne, Dept Actuarial Sci, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Parisian ruin; Gaussian process; Levy process; fractional Brownian motion; infimum of Brownian motion; generalized Pickands constant; generalized Piterbarg constant; GAMMA-REFLECTED PROCESSES; EXTREMES; PROBABILITY; SUPREMUM; DELAY;
D O I
10.1007/s11425-015-5073-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a risk process R (u) (t) = u + ct - X(t), t a parts per thousand yen 0, where u a parts per thousand yen 0 is the initial capital, c > 0 is the premium rate and X(t), t a parts per thousand yen 0 is an aggregate claim process, we investigate the probability of the Parisian ruin P-S(u, T-u) = P{inf(t is an element of[0,S])sup(s is an element of[t,t+Tu]) R-u(s) < 0}, S,T-u > 0. For X being a general Gaussian process we derive approximations of PS(u, T (u) ) as u -> a. As a by-product, we obtain the tail asymptotic behaviour of the infimum of a standard Brownian motion with drift over a finite-time interval.
引用
收藏
页码:557 / 572
页数:16
相关论文
共 33 条
[2]   Brownian excursions and Parisian barrier options [J].
Chesney, M ;
JeanblancPicque, M ;
Yor, M .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :165-184
[3]  
Czarna I, 2014, ARXIV14037761
[4]   Parisian ruin probability with a lower ultimate bankrupt barrier [J].
Czarna, Irmina .
SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (04) :319-337
[5]   Dividend Problem with Parisian Delay for a Spectrally Negative Levy Risk Process [J].
Czarna, Irmina ;
Palmowski, Zbigniew .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (01) :239-256
[6]   RUIN PROBABILITY WITH PARISIAN DELAY FOR A SPECTRALLY NEGATIVE LEVY RISK PROCESS [J].
Czarna, Irmina ;
Palmowski, Zbigniew .
JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) :984-1002
[7]  
Dassios A., 2008, PREPRINT
[8]   On the infimum attained by the reflected fractional Brownian motion [J].
Debicki, K. ;
Kosinski, K. M. .
EXTREMES, 2014, 17 (03) :431-446
[9]   Ruin probability for Gaussian integrated processes [J].
Debicki, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 98 (01) :151-174
[10]  
Debicki K, 2014, ARXIV14052958