A note on Sobolev type inequalities on graphs with polynomial volume growth

被引:2
作者
Chen, Li [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
Graphs; Polynomial volume growth; Sobolev type inequalities; Poincare type inequalities; SPACES;
D O I
10.1007/s00013-019-01329-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the generalized L-p-Poincare inequalities and Sobolev type inequalities on graphs with polynomial volume growth. They are optimal on Vicsek graphs.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 15 条
[1]   INTERPOLATION OF SOBOLEV SPACES, LITTLEWOOD-PALEY INEQUALITIES AND RIESZ TRANSFORMS ON GRAPHS [J].
Badr, Nadine ;
Russ, Emmanuel .
PUBLICACIONS MATEMATIQUES, 2009, 53 (02) :273-328
[2]   Manifolds and graphs with slow heat kernel decay [J].
Barlow, M ;
Coulhon, T ;
Grigor'yan, A .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :609-649
[3]  
Barlow Martin T., 2017, LONDON MATH SOC LECT, V438
[4]  
Barlow MT, 2004, REV MAT IBEROAM, V20, P1
[5]  
Chen L, 2017, J GEOM ANAL, V27, P1489, DOI 10.1007/s12220-016-9728-5
[6]  
Coulhon T, 2003, TRENDS MATH, P119
[7]   Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems [J].
Coulhon, T ;
Holopainen, L ;
Saloff-Coste, L .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (06) :1139-1191
[8]   Lipschitz spaces and Poincare inequalities [J].
Coulhon, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 136 (01) :81-113
[9]   DIMENSIONS AT INFINITY FOR RIEMANNIAN-MANIFOLDS [J].
COULHON, T .
POTENTIAL ANALYSIS, 1995, 4 (04) :335-344
[10]  
Coulhon T., 1993, Rev. Mat. Iberoam, V9, P293, DOI [10.4171/rmi/138, DOI 10.4171/RMI/138]