REMARKS ON MINIMIZERS FOR (p, q)-LAPLACE EQUATIONS WITH TWO PARAMETERS

被引:19
作者
Bobkov, Vladimir [1 ,2 ]
Tanaka, Mieko [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, NTIS, Fac Appl Sci, Univ 8, Plzen 30614, Czech Republic
[3] Tokyo Univ Sci, Dept Math, Shinjyuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
关键词
p-Laplacian; (p; q)-Laplacian; nonlinear eigenvalue problem; global minimizer; ground states; Nehari manifold; fibered functional; improved Poincare inequality; POSITIVE SOLUTIONS; P-LAPLACIAN; NODAL SOLUTIONS; REGULARITY; EXISTENCE; ENERGY; EIGENVALUE; SIGN;
D O I
10.3934/cpaa.2018059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in detail the existence, nonexistence and behavior of global minimizers, ground states and corresponding energy levels of the (p, q)-Laplace equation -Delta(p)u - Delta(q)u = alpha vertical bar u vertical bar(p-2)u + beta vertical bar u vertical bar(q-2)u in a bounded domain Omega subset of R-N under zero Dirichlet boundary condition, where p > q > 1 and alpha,beta is an element of R. A curve on the (alpha,beta)-plane which allocates a set of the existence of ground states and the multiplicity of positive solutions is constructed. Additionally, we show that eigenfunctions of the p- and q-Laplacians under zero Dirichlet boundary condition are linearly independent.
引用
收藏
页码:1219 / 1253
页数:35
相关论文
共 39 条
[11]  
Chueshov I, 2006, DISCRETE CONT DYN-A, V15, P777
[12]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[13]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[14]   Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations [J].
Damascelli, L ;
Sciunzi, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :483-515
[15]  
Drabek P., 2002, ELECTRON J DIFFER EQ, V8, P103
[16]  
Drabek P., 2013, Methods of nonlinear analysis: applications to differential equations
[17]  
Drabek P., 1997, QUASILINEAR ELLIPTIC
[18]   COMPARISON AND POSITIVE SOLUTIONS FOR PROBLEMS WITH THE (p, q)-LAPLACIAN AND A CONVECTION TERM [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Motreanu, Dumitru .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) :687-698
[19]   Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :507-518
[20]  
Fleckinger-Pelle J., 2002, ADV DIFFER EQU-NY, V7, P951