REMARKS ON MINIMIZERS FOR (p, q)-LAPLACE EQUATIONS WITH TWO PARAMETERS

被引:19
作者
Bobkov, Vladimir [1 ,2 ]
Tanaka, Mieko [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, NTIS, Fac Appl Sci, Univ 8, Plzen 30614, Czech Republic
[3] Tokyo Univ Sci, Dept Math, Shinjyuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
关键词
p-Laplacian; (p; q)-Laplacian; nonlinear eigenvalue problem; global minimizer; ground states; Nehari manifold; fibered functional; improved Poincare inequality; POSITIVE SOLUTIONS; P-LAPLACIAN; NODAL SOLUTIONS; REGULARITY; EXISTENCE; ENERGY; EIGENVALUE; SIGN;
D O I
10.3934/cpaa.2018059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in detail the existence, nonexistence and behavior of global minimizers, ground states and corresponding energy levels of the (p, q)-Laplace equation -Delta(p)u - Delta(q)u = alpha vertical bar u vertical bar(p-2)u + beta vertical bar u vertical bar(q-2)u in a bounded domain Omega subset of R-N under zero Dirichlet boundary condition, where p > q > 1 and alpha,beta is an element of R. A curve on the (alpha,beta)-plane which allocates a set of the existence of ground states and the multiplicity of positive solutions is constructed. Additionally, we show that eigenfunctions of the p- and q-Laplacians under zero Dirichlet boundary condition are linearly independent.
引用
收藏
页码:1219 / 1253
页数:35
相关论文
共 39 条
[1]  
Aizicovici S, 2015, T AM MATH SOC, V367, P7343
[2]  
Alves MJ., 2015, Illinois J. Math, V59, P545, DOI DOI 10.1215/IJM/1475266397
[3]  
ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
[4]   MAX-MIN CHARACTERIZATION OF THE MOUNTAIN PASS ENERGY LEVEL FOR A CLASS OF VARIATIONAL PROBLEMS [J].
Bellazzini, Jacopo ;
Visciglia, Nicola .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) :3335-3343
[5]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[6]   On sign-changing solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :101-129
[7]   On positive solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :3277-3301
[8]   REMARKS ON GENERALIZED TRIGONOMETRIC FUNCTIONS [J].
Bushell, P. J. ;
Edmunds, D. E. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) :25-57
[9]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[10]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22