Generic forms of low Chow rank

被引:5
作者
Torrance, Douglas A. [1 ]
机构
[1] Piedmont Coll, Dept Math & Phys, POB 10,1021 Cent Ave, Demorest, GA 30535 USA
关键词
Secant variety; Chow rank; Chow variety; VARIETIES;
D O I
10.1142/S0219498817500475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The least number of products of linear forms that may be added together to obtain a given form is the Chow rank of this form. The Chow rank of a generic form corresponds to the smallest s for which the 8th secant variety of the Chow variety fills the ambient space. We show that, except for certain known exceptions, this secant variety has the expected dimension for low values of s.
引用
收藏
页数:10
相关论文
共 15 条
[1]  
Abo H, 2009, T AM MATH SOC, V361, P767
[2]   Varieties of completely decomposable forms and their secants [J].
Abo, Hirotachi .
JOURNAL OF ALGEBRA, 2014, 403 :135-153
[3]  
Alexander J., 1995, J ALGEBRAIC GEOM, V4, P201
[4]  
[Anonymous], MACAULAY2 SOFTWARE S
[5]   On the variety parameterizing completely decomposable polynomials [J].
Arrondo, Enrique ;
Bernardi, Alessandra .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (03) :201-220
[6]   Complete intersections on general hypersurfaces [J].
Carlini, Enrico ;
Chiantini, Luca ;
Geramita, Anthony V. .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :121-136
[7]  
Carlini E, 2010, MICH MATH J, V59, P269
[8]  
Catalayud MP, 2014, ARCH PHYS, P1
[9]  
Catalisano M., 2015, PREPRINT
[10]  
Landsberg J., 2012, TENSORS GEOMETRY APP, V128