Molybdenum Induces Growth, Yield, and Defence System Mechanisms of the Mung Bean (Vigna radiata L.) under Water Stress Conditions

被引:9
|
作者
Hayyawi, Nahlaa Jamal Hussain [1 ]
Al-Issawi, Mohammed H. [1 ]
Alrajhi, Abdullah A. [2 ]
Al-Shmgani, Hanady [3 ]
Rihan, Hail [4 ]
机构
[1] Univ Anbar, Coll Agr, Dept Field Crops, Ramadi, Iraq
[2] King Abdulaziz City Sci & Technol, Life Sci & Environm Res Inst, Natl Ctr Agr Technol, Riyadh, Saudi Arabia
[3] Univ Baghdad, Coll Educ Pure Sci, Baghdad, Iraq
[4] Univ Plymouth, Sch Biol & Marine Sci, Plymouth, Devon, England
关键词
ANTIOXIDATIVE DEFENSE; SUPEROXIDE-DISMUTASE; LIPID-PEROXIDATION; ENZYME-ACTIVITY; WINTER-WHEAT; PROLINE; TOLERANCE; EXPRESSION; NITROGEN; ACCUMULATION;
D O I
10.1155/2020/8887329
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water stress has a negative impact on the yield and growth of crops worldwide and consequently has a global impact on food security. Many biochemical changes occur in plants as a response to water stress, such as activation of antioxidant systems. Molybdenum (Mo) plays an important part in activating the expression of many enzymes, such as CAT, POD, and SOD, as well as increasing the proline content. Mo therefore supports the defence system in plants and plays an important role in the defence system of mung bean plants growing under water stress conditions. Four concentrations of Mo (0, 15, 30, and 45 mg.L-1) were applied to plants, using two approaches: (a) seed soaking and (b) foliar application. Mung bean plants were subjected to three irrigation intervals (4 days control, 8 days-moderate water stress, and 12 days severe water stress). Irrigation intervals caused a reduction in the growth and production of mung beans, especially when the plants were irrigated every 12 days. It also led to the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in mung bean leaves, and these are considered to be indicators of lipid peroxidation and Reactive Oxygen Species (ROS) accumulation, respectively. On the other hand, applying Mo enhanced some growth and yield traits and also enhanced the defence system by upregulating antioxidant expressions, such as proline, catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). The MDA content did not change under the effect of Mo treatments. However, H2O2 content slightly increased with an increase of Mo concentration of up to 30 mg.L-1 followed by a significant decrease when Mo concentration was increased to 45 mg.L-1. It can be concluded that Mo is a robust tool for the activation of the defence system in mung beans.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.)
    Chen, Fu
    Aqeel, Muhammad
    Khalid, Noreen
    Nazir, Atia
    Irshad, Muhammad Kashif
    Akbar, Muhammad Usman
    Alzuaibr, Fahad Mohammed
    Ma, Jing
    Noman, Ali
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 449
  • [32] Growth, Physiological and Biochemical Responses of Mung Bean ( Vigna radiata L.) to Cadmium Polluted Soil
    Hayat, Rida
    Khan, Imran
    Chattha, Muhammad Umer
    Hassan, Muhammad Umair
    Jian, Wei
    Al-Khayri, Jameel Mohammed
    Aldaej, Mohammed Ibrahim
    Sattar, Muhammad Naeem
    Rezk, Adel Abdel-Sabour
    Almaghasla, Mustafa Ibrahim
    JOURNAL OF ECOLOGICAL ENGINEERING, 2024, 25 (03): : 75 - 84
  • [33] Physiological and yield response of mung bean (Vigna radiata (L.) Wilczek) to exogenous application of bioregulatory molecules
    Mitra, Raktim
    Kumar, Pramod
    PLANT PHYSIOLOGY REPORTS, 2024, 29 (02) : 343 - 355
  • [34] Ecological Success of Compatible Microbes in Consortia Isolated from Rice Rhizosphere for Growth and Yield of Mung Bean (Vigna radiata L.)
    Renu
    Sahu, Pramod Kumar
    Sahu, Upasana
    Bhoyar, Manish S.
    Kumar, Munish
    Singh, Udai Bhan
    Pathak, R. K.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2016, 10 (04): : 3231 - 3239
  • [35] Optimizing yield and water productivity in summer mung bean (Vigna radiata L.) through crop residue management and irrigation strategies
    Tripathi, Saurabh
    Kaur, Anureet
    Brar, Ajmer Singh
    Sekhon, Karamjit Singh
    Singh, Sukhpreet
    Malik, Anurag
    Kisi, Ozgur
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [36] Silicic and Ascorbic Acid Induced Modulations in Photosynthetic, Mineral Uptake, and Yield Attributes of Mung Bean (Vigna radiata L. Wilczek) under Ozone Stress
    Shahzadi, Eram
    Nawaz, Muhammad
    Iqbal, Naeem
    Ali, Baber
    Adnan, Muhammad
    Saleem, Muhammad Hamzah
    Okla, Mohammad K.
    Abbas, Zahid Khorshid
    Al-Qahtani, Salem Mesfir
    Al-Harbi, Nadi Awad
    Marc, Romina Alina
    ACS OMEGA, 2023, 8 (15): : 13971 - 13981
  • [37] Phosphorous fertilization alleviates shading stress by regulating leaf photosynthesis and the antioxidant system in mung bean (Vigna radiata L.)
    Dang, Ke
    Gong, Xiangwei
    Liang, Haofeng
    Guo, Shuqing
    Zhang, Suiqi
    Feng, Baili
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 196 : 1111 - 1121
  • [38] Mung Bean (Vigna radiata L.) genotypes assessment for drought tolerance in Uzbekistan
    Azimov, Abdulahad
    Shavkiev, Jaloliddin
    Saidjanov, Shakhzod
    Ziyaev, Zafar
    Valiyev, Lochin
    JOURNAL OF WILDLIFE AND BIODIVERSITY, 2024, 8 (01) : 65 - 75
  • [39] Transcriptome Analysis of Resistance to Fusarium Wilt in Mung Bean (Vigna radiata L.)
    Chang, Yujie
    Sun, Feifei
    Sun, Suli
    Wang, Lanfen
    Wu, Jing
    Zhu, Zhendong
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [40] The Properties, Modification and Application of Mung Bean (Vigna radiata L. Wilczek) Starch
    Zhou, Shulan
    Ye, Fayin
    Zhao, Guohua
    Journal of Chinese Institute of Food Science and Technology, 2022, 22 (04) : 450 - 461