Molybdenum Induces Growth, Yield, and Defence System Mechanisms of the Mung Bean (Vigna radiata L.) under Water Stress Conditions

被引:9
|
作者
Hayyawi, Nahlaa Jamal Hussain [1 ]
Al-Issawi, Mohammed H. [1 ]
Alrajhi, Abdullah A. [2 ]
Al-Shmgani, Hanady [3 ]
Rihan, Hail [4 ]
机构
[1] Univ Anbar, Coll Agr, Dept Field Crops, Ramadi, Iraq
[2] King Abdulaziz City Sci & Technol, Life Sci & Environm Res Inst, Natl Ctr Agr Technol, Riyadh, Saudi Arabia
[3] Univ Baghdad, Coll Educ Pure Sci, Baghdad, Iraq
[4] Univ Plymouth, Sch Biol & Marine Sci, Plymouth, Devon, England
关键词
ANTIOXIDATIVE DEFENSE; SUPEROXIDE-DISMUTASE; LIPID-PEROXIDATION; ENZYME-ACTIVITY; WINTER-WHEAT; PROLINE; TOLERANCE; EXPRESSION; NITROGEN; ACCUMULATION;
D O I
10.1155/2020/8887329
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water stress has a negative impact on the yield and growth of crops worldwide and consequently has a global impact on food security. Many biochemical changes occur in plants as a response to water stress, such as activation of antioxidant systems. Molybdenum (Mo) plays an important part in activating the expression of many enzymes, such as CAT, POD, and SOD, as well as increasing the proline content. Mo therefore supports the defence system in plants and plays an important role in the defence system of mung bean plants growing under water stress conditions. Four concentrations of Mo (0, 15, 30, and 45 mg.L-1) were applied to plants, using two approaches: (a) seed soaking and (b) foliar application. Mung bean plants were subjected to three irrigation intervals (4 days control, 8 days-moderate water stress, and 12 days severe water stress). Irrigation intervals caused a reduction in the growth and production of mung beans, especially when the plants were irrigated every 12 days. It also led to the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in mung bean leaves, and these are considered to be indicators of lipid peroxidation and Reactive Oxygen Species (ROS) accumulation, respectively. On the other hand, applying Mo enhanced some growth and yield traits and also enhanced the defence system by upregulating antioxidant expressions, such as proline, catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). The MDA content did not change under the effect of Mo treatments. However, H2O2 content slightly increased with an increase of Mo concentration of up to 30 mg.L-1 followed by a significant decrease when Mo concentration was increased to 45 mg.L-1. It can be concluded that Mo is a robust tool for the activation of the defence system in mung beans.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] RESPONSE OF MUNG BEAN ( VIGNA RADIATA L.) SEED TREATED WITH GIBBERELLIN UNDER WATER-STRESS CONDITIONS
    Al-Sabagh, T. M. H. B.
    Hadi, S. F.
    Abdul-Kadhim, M. H.
    Qahraman, D. S.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (03): : 1262 - 1270
  • [2] YIELD COMPONENTS IN MUNG BEAN [Vigna radiata (L.) Wilczek]
    Canci, Huseyin
    Toker, Cengiz
    TURKISH JOURNAL OF FIELD CROPS, 2014, 19 (02) : 258 - 261
  • [3] INFLUENCE OF GROWTH STIMULANTS WITH RHIZOBIUM INOCULATION ON THE YIELD OF MUNG BEAN (Vigna radiata L.)
    Qureshi, Muhammad Amjad
    Mujeeb, F.
    Anjum, M. A.
    Ali, M. Asif
    Khan, Ajmal
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2017, 54 (03): : 523 - 529
  • [4] Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress
    Benlioglu, Berk
    Ozkan, Ugur
    JOURNAL OF TEKIRDAG AGRICULTURE FACULTY-TEKIRDAG ZIRAAT FAKULTESI DERGISI, 2020, 17 (03): : 318 - 328
  • [5] Zinc application improves growth, yield and grain zinc concentration of mung bean (Vigna radiata L.)
    Hussain, Mubshar
    Shahid, Muhammad Zeeshan
    Mehboob, Noman
    Minhas, Waqas Ahmed
    Akram, Muhammad
    SEMINA-CIENCIAS AGRARIAS, 2021, 42 (02): : 487 - 499
  • [6] Ameliorating effects of exogenous paclobutrazol and putrescine on mung bean [Vigna radiata (L.) Wilczek] under water deficit stress
    Babarashi, Esmaeil
    Rokhzadi, Asad
    Pasari, Babak
    Mohammadi, Khosro
    PLANT SOIL AND ENVIRONMENT, 2021, 67 (01) : 40 - 45
  • [7] STUDIES ON GENETIC DIVERSITY IN MUNG BEAN (VIGNA RADIATA L.)
    Gokulakrishnan, J.
    Kumar, B. Sunil
    Prakash, M.
    LEGUME RESEARCH, 2012, 35 (01) : 50 - 52
  • [8] Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage
    Pramod Kumar
    Madan Pal
    Rohit Joshi
    R. K. Sairam
    Physiology and Molecular Biology of Plants, 2013, 19 : 209 - 220
  • [9] Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage
    Kumar, Pramod
    Pal, Madan
    Joshi, Rohit
    Sairam, R. K.
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2013, 19 (02) : 209 - 220
  • [10] Isolation and screening of rhizobia for auxin biosynthesis and growth promotion of mung bean (Vigna radiata L.) seedlings under axenic conditions
    Anjum, Muhammad Ashfaq
    Zahir, Zahir Ahmad
    Arshad, Muhammad
    Ashraf, Muhammad
    SOIL & ENVIRONMENT, 2011, 30 (01) : 18 - 26