Inference, Prediction, & Entropy-Rate Estimation of Continuous-Time, Discrete-Event Processes

被引:0
作者
Marzen, Sarah E. [1 ,2 ]
Crutchfield, James P. [3 ,4 ]
机构
[1] Pitzer, WM Keck Sci Dept, Scripps, Claremont, CA 91711 USA
[2] Claremont McKenna Coll, Claremont, CA 91711 USA
[3] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
[4] Univ Calif Davis, Phys & Astron Dept, One Shields Ave, Davis, CA 95616 USA
关键词
Poisson process; renewal process; hidden semi-Markov process; hidden Markov chain; epsilon-machine; Shannon entropy rate; optimal predictor; minimal predictor; NETWORKS; PREDICTABILITY; RANDOMNESS; COMPLEXITY;
D O I
10.3390/e24111675
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inferring models, predicting the future, and estimating the entropy rate of discrete-time, discrete-event processes is well-worn ground. However, a much broader class of discrete-event processes operates in continuous-time. Here, we provide new methods for inferring, predicting, and estimating them. The methods rely on an extension of Bayesian structural inference that takes advantage of neural network's universal approximation power. Based on experiments with complex synthetic data, the methods are competitive with the state-of-the-art for prediction and entropy-rate estimation.
引用
收藏
页数:15
相关论文
共 49 条
[1]  
[Anonymous], 2002, P 18 C UNC ART INT
[2]  
Archer E, 2014, J MACH LEARN RES, V15, P2833
[3]  
Arnold D, 2001, 2001 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-10, CONFERENCE RECORD, P2692, DOI 10.1109/ICC.2001.936639
[4]   Predictability and hierarchy in Drosophila behavior [J].
Berman, Gordon J. ;
Bialek, William ;
Shaevitz, Joshua W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (42) :11943-11948
[5]   Predictability, complexity, and learning [J].
Bialek, W ;
Nemenman, I ;
Tishby, N .
NEURAL COMPUTATION, 2001, 13 (11) :2409-2463
[6]   Complexity through nonextensivity [J].
Bialek, W ;
Nemenman, I ;
Tishby, N .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) :89-99
[7]  
Bishop C., 2006, Pattern Recognition and Machine Learning
[8]   Dynamical maximum entropy approach to flocking [J].
Cavagna, Andrea ;
Giardina, Irene ;
Ginelli, Francesco ;
Mora, Thierry ;
Piovani, Duccio ;
Tavarone, Raffaele ;
Walczak, Aleksandra M. .
PHYSICAL REVIEW E, 2014, 89 (04)
[9]  
Collins J., 2016, ARXIV
[10]   Multiscale entropy analysis of complex physiologic time series [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :1-068102