Evolution in a Gaussian random field

被引:0
|
作者
Alkhimov, VI [1 ]
机构
[1] Moscow State Reg Univ, Moscow, Russia
关键词
random field; correlation function; Green's function; Feynman-Kac formula; renormalization group;
D O I
10.1023/B:TAMP.0000029709.88094.74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an evolution process in a Gaussian random field V(q) with the mean <V(q)> = 0 and the correlation function W (\q - q'\) equivalent to <V (q) V (q')>, where q epsilon R-d and d is the dimension of the Euclidean space R-d. For the value <G(q, t; q(0))>, t > 0, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman-Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for <G(q, t; q(0))> as \q - q(0)\ --> infinity and t --> infinity.
引用
收藏
页码:878 / 893
页数:16
相关论文
共 50 条
  • [41] Risks of Classification of the Gaussian Markov Random Field Observations
    Ducinskas, Kestutis
    Dreiziene, Lina
    JOURNAL OF CLASSIFICATION, 2018, 35 (03) : 422 - 436
  • [42] Singularities in learning models: Gaussian random field approach
    Amari, S
    Ozeki, T
    Park, H
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 1565 - 1569
  • [43] Gaussian Markov random field spatial models in GAMLSS
    De Bastiani, Fernanda
    Rigby, Robert A.
    Stasinopoulous, Dimitrios M.
    Cysneiros, Audrey H. M. A.
    Uribe-Opazo, Miguel A.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (01) : 168 - 186
  • [44] GAUSSIAN RANDOM FIELD: PHYSICAL ORIGIN OF SERSIC PROFILES
    Cen, Renyue
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 790 (02)
  • [45] Gaussian random field description of fluctuating fluid vesicles
    Pieruschka, P
    Wennerstrom, H
    PHYSICAL REVIEW E, 1996, 53 (03): : 2693 - 2700
  • [46] Simulation of a strictly sub-Gaussian random field
    Turchyn, Ievgen
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 183 - 189
  • [47] The asymptotic distribution of the maxima of a Gaussian random field on a lattice
    French, Joshua P.
    Davis, Richard A.
    EXTREMES, 2013, 16 (01) : 1 - 26
  • [48] Thick points of random walk and the Gaussian free field
    Jego, Antoine
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [49] A Gaussian Random Field Model of Smooth Fitness Landscapes
    Moraglio, Alberto
    Borenstein, Yossi
    FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2009, : 171 - 182
  • [50] Spectral approximation to the likelihood for an intrinsic Gaussian random field
    Kent, JT
    Mohammadzadeh, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 70 (01) : 136 - 155