Evolution in a Gaussian random field

被引:0
|
作者
Alkhimov, VI [1 ]
机构
[1] Moscow State Reg Univ, Moscow, Russia
关键词
random field; correlation function; Green's function; Feynman-Kac formula; renormalization group;
D O I
10.1023/B:TAMP.0000029709.88094.74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an evolution process in a Gaussian random field V(q) with the mean <V(q)> = 0 and the correlation function W (\q - q'\) equivalent to <V (q) V (q')>, where q epsilon R-d and d is the dimension of the Euclidean space R-d. For the value <G(q, t; q(0))>, t > 0, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman-Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for <G(q, t; q(0))> as \q - q(0)\ --> infinity and t --> infinity.
引用
收藏
页码:878 / 893
页数:16
相关论文
共 50 条
  • [31] GEOMETRY-ADAPTED GAUSSIAN RANDOM FIELD REGRESSION
    Zhang, Zhen
    Wang, Mianzhi
    Xiang, Yijian
    Nehorai, Arye
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6528 - 6532
  • [33] Simulation of Cox Processes Driven by Random Gaussian Field
    Kozachenko, Yurij
    Pogoriliak, Oleksandr
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2011, 13 (03) : 511 - 521
  • [34] Gaussian Conditional Random Field Network for Semantic Segmentation
    Vemulapalli, Raviteja
    Tuzel, Oncel
    Liu, Ming-Yu
    Chellappa, Rama
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3224 - 3233
  • [35] The asymptotic distribution of the maxima of a Gaussian random field on a lattice
    Joshua P. French
    Richard A. Davis
    Extremes, 2013, 16 : 1 - 26
  • [36] False alarm curve for envelope of Gaussian random field
    Hill, RD
    Tough, RJA
    Ward, KD
    ELECTRONICS LETTERS, 2001, 37 (04) : 258 - 259
  • [37] Calibration of Gaussian Random Field stochastic EUV models
    Latypov, Azat M.
    Wei, Chih-, I
    De Bisschop, Peter
    Khaira, Gurdaman
    Fenger, Germain
    OPTICAL AND EUV NANOLITHOGRAPHY XXXV, 2022, 12051
  • [38] On ANOVA Decompositions of Kernels and Gaussian Random Field Paths
    Ginsbourger, David
    Roustant, Olivier
    Schuhmacher, Dominic
    Durrande, Nicolas
    Lenz, Nicolas
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 315 - 330
  • [39] Simulation of Cox Processes Driven by Random Gaussian Field
    Yurij Kozachenko
    Oleksandr Pogoriliak
    Methodology and Computing in Applied Probability, 2011, 13 : 511 - 521
  • [40] A Gaussian Markov random field approach to convergence analysis
    Ippoliti, L.
    Romagnoli, L.
    Arbia, G.
    SPATIAL STATISTICS, 2013, 6 : 78 - 90