Evolution in a Gaussian random field

被引:0
|
作者
Alkhimov, VI [1 ]
机构
[1] Moscow State Reg Univ, Moscow, Russia
关键词
random field; correlation function; Green's function; Feynman-Kac formula; renormalization group;
D O I
10.1023/B:TAMP.0000029709.88094.74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an evolution process in a Gaussian random field V(q) with the mean <V(q)> = 0 and the correlation function W (\q - q'\) equivalent to <V (q) V (q')>, where q epsilon R-d and d is the dimension of the Euclidean space R-d. For the value <G(q, t; q(0))>, t > 0, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman-Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for <G(q, t; q(0))> as \q - q(0)\ --> infinity and t --> infinity.
引用
收藏
页码:878 / 893
页数:16
相关论文
共 50 条
  • [21] HAUSDORFF DIMENSION OF GRAPH OF A GAUSSIAN RANDOM FIELD
    ZINCHENKO, NM
    MATHEMATICAL NOTES, 1977, 21 (1-2) : 72 - 74
  • [22] ESTIMATION OF SMOOTHNESS OF A STATIONARY GAUSSIAN RANDOM FIELD
    Wu, Wei-Ying
    Lim, Chae Young
    STATISTICA SINICA, 2016, 26 (04) : 1729 - 1745
  • [23] The self-intersections of a Gaussian random field
    Department of mathematics, Zhejiang University, Xixi Campus, Hangzhou, China
    Stoch. Processes Appl., 2006, 9 (1294-1318):
  • [24] The self-intersections of a Gaussian random field
    Zhang, Rongmao
    Lin, Zhengyan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (09) : 1294 - 1318
  • [25] An Efficient Gaussian Filter Based on Gaussian Symmetric Markov Random Field
    Xiong, Fusong
    Zhang, Jian
    Zhang, Zhiqiang
    Ling, Yun
    IEEE ACCESS, 2022, 10 : 74590 - 74604
  • [26] The random transposition dynamics on random regular graphs and the Gaussian free field
    Ganguly, Shirshendu
    Pal, Soumik
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2935 - 2970
  • [27] Stochastic Integrals and Evolution Equations with Gaussian Random Fields
    Lototsky, S. V.
    Stemmann, K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 59 (02): : 203 - 232
  • [28] Stochastic Integrals and Evolution Equations with Gaussian Random Fields
    S. V. Lototsky
    K. Stemmann
    Applied Mathematics and Optimization, 2009, 59 : 203 - 232
  • [29] Random field effects on the anisotropic quantum Heisenberg model with Gaussian random magnetic field distribution
    Akinci, Umit
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) : 4380 - 4387
  • [30] A comparative study of Gaussian geostatistical models and Gaussian Markov random field models
    Song, Hae-Ryoung
    Fuentes, Montserrat
    Ghosh, Sujit
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (08) : 1681 - 1697