Evolution in a Gaussian random field

被引:0
|
作者
Alkhimov, VI [1 ]
机构
[1] Moscow State Reg Univ, Moscow, Russia
关键词
random field; correlation function; Green's function; Feynman-Kac formula; renormalization group;
D O I
10.1023/B:TAMP.0000029709.88094.74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an evolution process in a Gaussian random field V(q) with the mean <V(q)> = 0 and the correlation function W (\q - q'\) equivalent to <V (q) V (q')>, where q epsilon R-d and d is the dimension of the Euclidean space R-d. For the value <G(q, t; q(0))>, t > 0, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman-Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for <G(q, t; q(0))> as \q - q(0)\ --> infinity and t --> infinity.
引用
收藏
页码:878 / 893
页数:16
相关论文
共 50 条
  • [1] Evolution in a Gaussian Random Field
    V. I. Alkhimov
    Theoretical and Mathematical Physics, 2004, 139 : 878 - 893
  • [2] Nonlinear evolution of genus in a primordial random Gaussian density field
    Matsubara, T
    Suto, Y
    ASTROPHYSICAL JOURNAL, 1996, 460 (01): : 51 - 58
  • [3] ENVELOPE OF A GAUSSIAN RANDOM FIELD
    ADLER, RJ
    JOURNAL OF APPLIED PROBABILITY, 1978, 15 (03) : 502 - 513
  • [4] EXTRAPOLATION OF HOMOGENEOUS RANDOM FIELDS AND THE QUANTITY OF INFORMATION ON A GAUSSIAN RANDOM FIELD, CONTAINED IN ANOTHER GAUSSIAN RANDOM FIELD
    PINSKER, MS
    DOKLADY AKADEMII NAUK SSSR, 1957, 112 (05): : 815 - 818
  • [5] THE CLUSTERING OF PEAKS IN A RANDOM GAUSSIAN FIELD
    LUMSDEN, SL
    HEAVENS, AF
    PEACOCK, JA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1989, 238 (01) : 293 - 318
  • [6] Random process in a homogeneous Gaussian field
    Alkhimov V.I.
    Journal of Mathematical Sciences, 2010, 167 (6) : 727 - 740
  • [7] Gaussian random field models of aerogels
    Quintanilla, J. (johnq@unt.edu), 1600, American Institute of Physics Inc. (93):
  • [8] Gaussian Process Latent Random Field
    Zhong, Guoqiang
    Li, Wu-Jun
    Yeung, Dit-Yan
    Hou, Xinwen
    Liu, Cheng-Lin
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 679 - 684
  • [9] RANDOM INTERLACEMENTS AND THE GAUSSIAN FREE FIELD
    Sznitman, Alain-Sol
    ANNALS OF PROBABILITY, 2012, 40 (06): : 2400 - 2438
  • [10] Gaussian random field models of aerogels
    Quintanilla, J
    Reidy, RF
    Gorman, BP
    Mueller, DW
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (08) : 4584 - 4589