Fundamental studies of ultrasonic melt processing

被引:171
作者
Eskin, D. G. [1 ,5 ]
Tzanakis, I. [2 ]
Wang, F. [1 ]
Lebon, G. S. B. [1 ]
Subroto, T. [1 ]
Pericleous, K. [3 ]
Mi, J. [4 ]
机构
[1] Brunel Univ London, BCAST, Uxbridge UB8 3PH, Middx, England
[2] Oxford Brookes Univ, MEMS, Oxford OX33 1HX, England
[3] Univ Greenwich, CSEG, London SE10 9LS, England
[4] Univ Hull, Sch Engn & Comp Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
[5] Tomsk State Univ, Tomsk 634050, Russia
基金
英国工程与自然科学研究理事会;
关键词
Aluminium; In situ characterisation; Acoustic pressure; Acoustic streaming; Ultrasonic melt processing; Structure refinement; Heterogeneous nucleation; Fragmentation; De-agglomeration; IN-SITU OBSERVATION; INTERMETALLIC PARTICLES; MECHANICAL-PROPERTIES; ACOUSTIC CAVITATION; WAVE-PROPAGATION; GRAIN-REFINEMENT; ALUMINUM MELT; LIQUID; PRESSURE; MICROSTRUCTURE;
D O I
10.1016/j.ultsonch.2018.12.028
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasonic (cavitation) melt processing attracts considerable interest from both academic and industrial communities as a promising route to provide clean, environment friendly and energy efficient solutions for some of the core issues of the metal casting industry, such as improving melt quality and providing structure refinement. In the last 5 years, the authors undertook an extensive research programme into fundamental mechanisms of cavitation melt processing using state-of-the-art and unique facilities and methodologies. This overview summarises the recent results on the evaluation of acoustic pressure and melt flows in the treated melt, direct observations and quantitative analysis of cavitation in liquid aluminium alloys, in-situ and ex-situ studies of the nucleation, growth and fragmentation of intermetallics, and de-agglomeration of particles. These results provide valuable new insights and knowledge that are essential for upscaling ultrasonic melt processing to industrial level.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 58 条
[1]  
Abramov O. V., 1972, CRYSTALLISATION META
[2]  
Abramov O.V., 1970, PHYS PRINCIPLES ULTR, P427
[3]   On the mechanism of grain refinement in Al-Zr-Ti alloys [J].
Atamanenko, T. V. ;
Eskin, D. G. ;
Sluiter, M. ;
Katgerman, L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (01) :57-60
[4]   Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti [J].
Atamanenko, T. V. ;
Eskin, D. G. ;
Zhang, L. ;
Katgerman, L. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (08) :2056-2066
[5]   EFFECTIVE EQUATIONS FOR WAVE-PROPAGATION IN BUBBLY LIQUIDS [J].
CAFLISCH, RE ;
MIKSIS, MJ ;
PAPANICOLAOU, GC ;
TING, L .
JOURNAL OF FLUID MECHANICS, 1985, 153 (APR) :259-273
[6]   Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)A1-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing [J].
Cao, G. ;
Konishi, H. ;
Li, X. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 486 (1-2) :357-362
[7]   Effect of Combined Addition of Cu and Aluminum Oxide Nanoparticles on Mechanical Properties and Microstructure of Al-7Si-0.3Mg Alloy [J].
Choi, Hongseok ;
Jones, Milton ;
Konishi, Hiromi ;
Li, Xiaochun .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (02) :738-746
[8]   Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor [J].
Dogan, Hakan ;
Popov, Viktor .
ULTRASONICS SONOCHEMISTRY, 2016, 30 :87-97
[9]   Translational motion of two interacting bubbles in a strong acoustic field [J].
Doinikov, AA .
PHYSICAL REVIEW E, 2001, 64 (02) :6-263016
[10]   Application of a plate sonotrode to ultrasonic degassing of aluminum melt: Acoustic measurements and feasibility study [J].
Eskin, D. G. ;
Al-Helal, K. ;
Tzanakis, I. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 222 :148-154