A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean

被引:138
作者
Braha, Naim L. [1 ,2 ]
Srivastava, H. M. [3 ]
Mohiuddine, S. A. [4 ]
机构
[1] Univ Prishtina, Dept Math & Comp Sci, Prishtine 10000, Republic Kosova, Serbia
[2] Coll Vizioni Per Arsim, Dept Comp Sci & Appl Math, Ferizaj 70000, Republic Kosova, Serbia
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Statistical convergence and statistical summability; The de la Vallee Poussin mean; Korovkin type theorems; Positive linear operators; Periodic functions; Nonincreasing and nondecreasing functions; Modulus of continuity; Rate of the de la Vallee Poussin statistical convergence; CONVERGENCE;
D O I
10.1016/j.amc.2013.11.095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of this paper is to prove a Korovkin type theorem for the test functions 1, cos x, sin x in the space C-2 pi(R) of all continuous 2 pi-periodic functions on the real line E. Our analysis is based upon the statistical summability involving the idea of the generalized de In Vallee Poussin mean. We also investigate the rate of the de la Vallee Poussin statistical summability of positive linear operators in the space C-2 pi(R). Finally, we provide an interesting illustrative example in support of our result. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 21 条
[1]  
Altomare F., 2010, SURVEYS APPROXIMATIO, V6, P92
[2]  
[Anonymous], 2011, ANN U FERRARA SEZ 7, DOI DOI 10.1007/S11565-011-0122-8
[3]   Generalized weighted statistical convergence and application [J].
Belen, C. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) :9821-9826
[4]   On I⟩2-strong convergence of numerical sequences and Fourier series [J].
Braha, N. L. ;
Mansour, T. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :113-126
[5]   Korovkin type approximation theorems obtained through generalized statistical convergence [J].
Edely, Osama H. H. ;
Mohiuddine, S. A. ;
Noman, Abdullah K. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (11) :1382-1387
[6]  
FAST H., 1951, Colloq. Math., V2, P241
[7]  
Korovkin P.P., 1960, LINEAR OPERATORS APP
[8]  
Korovkin PP., 1953, DOKL AKAD NAUK SSSR, V90, P961
[9]  
Mohiuddine SA, 2013, J COMPUT ANAL APPL, V15, P218
[10]   An application of almost convergence in approximation theorems [J].
Mohiuddine, S. A. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1856-1860