Backlund transformation and multiple soliton solutions for the (3+1) -dimensional Jimbo-Miwa equation

被引:0
作者
Zhang, JF [1 ]
Wu, FM [1 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
来源
CHINESE PHYSICS | 2002年 / 11卷 / 05期
关键词
soliton; homogeneous balance method; (3+1)-dimensions; JM equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an approach to constructing multiple soliton solutions of the (3 + 1)- dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3 + 1) -dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3 + 1)-dimensional JM equation are obtained by introducing a class of formal solutions.
引用
收藏
页码:425 / 428
页数:4
相关论文
共 19 条
[1]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[2]  
Fan EG, 1998, APPL MATH MECH-ENGL, V19, P645
[3]   Connections among homogeneous balance method, Weiss-Tabor-Carnevale method and Clarkson-Kruskal method [J].
Fan, EG .
ACTA PHYSICA SINICA, 2000, 49 (08) :1409-1412
[4]  
FAN EG, 1997, ACTA PHYS SINICA, V46, P1245
[5]  
FAN EG, 1998, ACTA PHYS SINICA, V47, P353
[6]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[7]   Exact solitary wave and soliton solutions of the generalized fifth order KdV equation [J].
Li, ZB ;
Pan, SQ .
ACTA PHYSICA SINICA, 2001, 50 (03) :402-405
[8]  
LI ZB, 2000, ACTA PHYS SINICA, V49, P402
[9]   Exact solutions for a compound KdV-Burgers equation [J].
Wang, ML .
PHYSICS LETTERS A, 1996, 213 (5-6) :279-287
[10]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172