Derivatives of Faber polynomials and Markov inequalities

被引:3
作者
Pritsker, IE [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
Asymptotics; Derivatives; Faber polynomials; Markov inequalities;
D O I
10.1006/jath.2002.3713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study asymptotic behavior of the derivatives of Faber polynomials on a set with corners at the boundary. Our results have applications to the questions of sharpness of Markov inequalities for such sets. In particular, the found asymptotics are related to a general Markov-type inequality of Pommerenke and the associated conjecture of Erdos. We also prove a new bound for Faber polynomials on piecewise smooth domains. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:163 / 174
页数:12
相关论文
共 50 条
[21]   Zeros of Faber Polynomials for Joukowski Airfoils [J].
Levenberg, N. ;
Wielonsky, F. .
CONSTRUCTIVE APPROXIMATION, 2020, 52 (01) :93-114
[22]   Zeros of Faber Polynomials for Joukowski Airfoils [J].
N. Levenberg ;
F. Wielonsky .
Constructive Approximation, 2020, 52 :93-114
[23]   Faber Polynomials on Quaternionic Compact Sets [J].
Gal, Sorin G. ;
Sabadini, Irene .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (05) :1205-1220
[24]   EXPLICIT FABER POLYNOMIALS ON CIRCULAR SECTORS [J].
GATERMANN, K ;
HOFFMANN, C ;
OPFER, G .
MATHEMATICS OF COMPUTATION, 1992, 58 (197) :241-&
[25]   On the best constants in inequalities of the Markov and Wirtinger types for polynomials on the half-line [J].
Boettcher, Albrecht ;
Doerfler, Peter .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) :1057-1069
[26]   ON FABER POLYNOMIALS GENERATED BY AN M-STAR [J].
BARTOLOMEO, J ;
HE, M .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :277-287
[27]   Power matrices for Faber polynomials and conformal welding [J].
Penfound, Bryan ;
Schippers, Eric .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) :1247-1259
[28]   BERNSTEIN-MARKOV TYPE INEQUALITIES AND OTHER INTERESTING ESTIMATES FOR POLYNOMIALS ON CIRCLE SECTORS [J].
Jimenez-Rodriguez, P. ;
Munoz-Fernandez, G. A. ;
Pellegrino, D. ;
Seoane-Sepulveda, J. B. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :285-300
[29]   Bernstein-Nikolskii-Markov-type inequalities for algebraic polynomials in a weighted Lebesgue space [J].
Ozkartepe, P. ;
Imashkyzy, M. ;
Abdullayev, F. G. .
FILOMAT, 2023, 37 (17) :5701-5715
[30]   THE FABER POLYNOMIALS FOR M-FOLD SYMMETRICAL DOMAINS [J].
HE, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 54 (03) :313-324