Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net

被引:7
|
作者
Li, Hongwei [1 ]
Zhygallo, Andrii [1 ]
Menze, Bjoern [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I | 2019年 / 11383卷
关键词
Brain structure segmentation; Deep learning;
D O I
10.1007/978-3-030-11723-8_39
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Brain image segmentation is used for visualizing and quantifying anatomical structures of the brain. We present an automated approach using 2D deep residual dilated networks which captures rich context information of different tissues for the segmentation of eight brain structures. The proposed system was evaluated in the MICCAI Brain Segmentation Challenge (http://mrbrains18.isi.uu.nl/) and ranked 9th out of 22 teams. We further compared the method with traditional U-Net using leave-one-subject-out cross-validation setting on the public dataset. Experimental results shows that the proposed method outperforms traditional U-Net (i.e. 80.9% vs 78.3% in averaged Dice score, 4.35mm vs 11.59mm in averaged robust Hausdorff distance) and is computationally efficient.
引用
收藏
页码:385 / 393
页数:9
相关论文
共 50 条
  • [1] An Automatic Nuclei Segmentation on Microscopic Images using Deep Residual U-Net
    Shree, H. P. Ramya
    Minavathi
    Dinesh, M. S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 571 - 577
  • [2] Automated Brain Tumor Diagnosis Using Deep Residual U-Net Segmentation Model
    Poonguzhali, R.
    Ahmad, Sultan
    Sivasankar, P. Thiruvannamalai
    Babu, S. Anantha
    Joshi, Pranav
    Joshi, Gyanendra Prasad
    Kim, Sung Won
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 2179 - 2194
  • [3] Deep Upscale U-Net for automatic tongue segmentation
    Worapan Kusakunniran
    Thanandon Imaromkul
    Sophon Mongkolluksamee
    Kittikhun Thongkanchorn
    Panrasee Ritthipravat
    Pimchanok Tuakta
    Paitoon Benjapornlert
    Medical & Biological Engineering & Computing, 2024, 62 : 1751 - 1762
  • [4] Deep Learning for Carotid Plaque Segmentation using a Dilated U-Net Architecture
    Meshram, Nirvedh H.
    Mitchell, Carol C.
    Wilbrand, Stephanie
    Dempsey, Robert J.
    Varghese, Tomy
    ULTRASONIC IMAGING, 2020, 42 (4-5) : 221 - 230
  • [5] Deep Upscale U-Net for automatic tongue segmentation
    Kusakunniran, Worapan
    Imaromkul, Thanandon
    Mongkolluksamee, Sophon
    Thongkanchorn, Kittikhun
    Ritthipravat, Panrasee
    Tuakta, Pimchanok
    Benjapornlert, Paitoon
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (06) : 1751 - 1762
  • [6] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [7] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    SYMMETRY-BASEL, 2020, 12 (05):
  • [8] Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes
    Kermi, Adel
    Mahmoudi, Issam
    Khadir, Mohamed Tarek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 37 - 48
  • [9] Brain Tumour Segmentation Using Probabilistic U-Net
    Savadikar, Chinmay
    Kulhalli, Rahul
    Garware, Bhushan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 255 - 264
  • [10] MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
    Khalaf, Muna
    Dhannoon, Ban N.
    BAGHDAD SCIENCE JOURNAL, 2022, 19 (06) : 1603 - 1611