Ab Initio Green-Kubo Approach for the Thermal Conductivity of Solids

被引:97
作者
Carbogno, Christian [1 ]
Ramprasad, Rampi [2 ]
Scheffler, Matthias [1 ,3 ,4 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
[2] Univ Connecticut, 97 North Eagleville Rd, Storrs, CT 06269 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
基金
欧盟地平线“2020”;
关键词
ZIRCONIA SINGLE-CRYSTALS; MOLECULAR-DYNAMICS; LATTICE; ENERGY;
D O I
10.1103/PhysRevLett.118.175901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We herein present a first-principles formulation of the Green-Kubo method that allows the accurate assessment of the phonon thermal conductivity of solid semiconductors and insulators in equilibrium ab initio molecular dynamics calculations. Using the virial for the nuclei, we propose a unique ab initio definition of the heat flux. Accurate size and time convergence are achieved within moderate computational effort by a robust, asymptotically exact extrapolation scheme. We demonstrate the capabilities of the technique by investigating the thermal conductivity of extreme high and low heat conducting materials, namely, Si (diamond structure) and tetragonal ZrO2.
引用
收藏
页数:5
相关论文
共 40 条
[11]   Method to extract anharmonic force constants from first principles calculations [J].
Esfarjani, Keivan ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2008, 77 (14)
[12]   Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study [J].
Garg, Jivtesh ;
Bonini, Nicola ;
Kozinsky, Boris ;
Marzari, Nicola .
PHYSICAL REVIEW LETTERS, 2011, 106 (04)
[13]   Thermal conductivity of Si nanostructures containing defects: Methodology, isotope effects, and phonon trapping [J].
Gibbons, T. M. ;
Kang, By. ;
Estreicher, S. K. ;
Carbogno, Christian .
PHYSICAL REVIEW B, 2011, 84 (03)
[14]   Impact of Impurities on the Thermal Conductivity of Semiconductor Nanostructures: First-Principles Theory [J].
Gibbons, T. M. ;
Estreicher, S. K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (25)
[15]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[16]   ENERGY-FLUX OPERATOR FOR A LATTICE [J].
HARDY, RJ .
PHYSICAL REVIEW, 1963, 132 (01) :168-&
[17]   Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations [J].
He, Yuping ;
Savic, Ivana ;
Donadio, Davide ;
Galli, Giulia .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (47) :16209-16222
[18]   TRANSPORT COEFFICIENTS FROM DISSIPATION IN A CANONICAL ENSEMBLE [J].
HELFAND, E .
PHYSICAL REVIEW, 1960, 119 (01) :1-9
[19]   Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon [J].
Howell, P. C. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (22)
[20]   All-electron formalism for total energy strain derivatives and stress tensor components for numeric atom-centered orbitals [J].
Knuth, Franz ;
Carbogno, Christian ;
Atalla, Viktor ;
Blum, Volker ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 190 :33-50