Efficient Graph Packing via Game Colouring

被引:23
作者
Kierstead, H. A. [1 ]
Kostochka, A. V. [2 ,3 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
基金
美国国家科学基金会;
关键词
PARTIAL K-TREES; CHROMATIC NUMBER;
D O I
10.1017/S0963548309009973
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The game colouring number gcol(G) of a graph G is the least k such that, if two players take turns choosing the vertices of a graph, then either of them can ensure that every vertex has fewer than k neighbours chosen before it, regardless of what choices the other player makes. Clearly gcol(G) <= Delta(G) + 1. Sauer and Spencer [20] proved that if two graphs G(1) and G(2) on n vertices satisfy 2 Delta(G(1))Delta(G(2)) < n then they pack, i.e., there is an embedding of G(1) into the complement of G(2). We improve this by showing that if (gcol(G(1)) - 1)Delta(G(2)) + (gcol(G(2)) - 1)Delta(G(1)) < n then G(1) and G(2) pack. To our knowledge this is the first application of colouring games to a non-game problem.
引用
收藏
页码:765 / 774
页数:10
相关论文
共 24 条
[1]  
[Anonymous], J COMBIN THEORY B
[2]  
[Anonymous], ELECT J COMBIN
[3]  
Bodlaender H. L., 1991, International Journal of Foundations of Computer Science, V2, P133, DOI 10.1142/S0129054191000091
[4]   PACKINGS OF GRAPHS AND APPLICATIONS TO COMPUTATIONAL COMPLEXITY [J].
BOLLOBAS, B ;
ELDRIDGE, SE .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (02) :105-124
[5]   On two conjectures on packing of graphs [J].
Bollobás, B ;
Kostochka, A ;
Nakprasit, K .
COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (5-6) :723-736
[6]  
BURR SA, 1975, INFINITE FINITE SETS, V1
[7]  
Catlin P. A., 1974, Discrete Mathematics, V10, P225, DOI 10.1016/0012-365X(74)90119-8
[8]   GRAPHS WITH LINEARLY BOUNDED RAMSEY NUMBERS [J].
CHEN, GT ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (01) :138-149
[9]   A bound for the game chromatic number of graphs [J].
Dinski, T ;
Zhu, XD .
DISCRETE MATHEMATICS, 1999, 196 (1-3) :109-115
[10]  
FAIGLE U, 1993, ARS COMBINATORIA, V35, P143