Multipartite Gaussian entanglement of formation

被引:4
作者
Onoe, Sho [1 ]
Tserkis, Spyros [2 ]
Lund, Austin P. [1 ]
Ralph, Timothy C. [1 ]
机构
[1] Univ Queensland, Ctr Quantum Computat & Commun Technol, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Australian Natl Univ, Ctr Quantum Computat & Commun Technol, Dept Quantum Sci, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
QUANTUM; STATE; SEPARABILITY; CRITERION;
D O I
10.1103/PhysRevA.102.042408
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entanglement of formation is a fundamental measure that quantifies the entanglement of bipartite quantum states. This measure has recently been extended into multipartite states, taking the name a-entanglement of formation. In this work we follow an analogous multipartite extension for the Gaussian version of entanglement of formation, and focusing on the finest partition of a multipartite Gaussian state, we show that this measure is fully additive and computable for three-mode Gaussian states.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2006, 73 (03)
[2]   Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states [J].
Adesso, G ;
Illuminati, F .
PHYSICAL REVIEW A, 2005, 72 (03)
[3]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[4]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[5]   ENTROPY, WIGNER DISTRIBUTION FUNCTION, AND APPROACH TO EQUILIBRIUM OF A SYSTEM OF COUPLED HARMONIC OSCILLATORS [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1971, 3 (02) :828-&
[6]   On the entanglement of formation of two-mode Gaussian states: a compact form [J].
Akbari-Kourbolagh, Y. ;
Alijanzadeh-Boura, H. .
QUANTUM INFORMATION PROCESSING, 2015, 14 (11) :4179-4199
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[9]   CANONICAL FORM OF AN ANTISYMMETRIC TENSOR AND ITS APPLICATION TO THEORY OF SUPERCONDUCTIVITY [J].
BLOCH, C ;
MESSIAH, A .
NUCLEAR PHYSICS, 1962, 39 (01) :95-&
[10]   Squeezing as an irreducible resource [J].
Braunstein, SL .
PHYSICAL REVIEW A, 2005, 71 (05)