On the crystallographic anisotropy of plastic zone size in single crystalline copper under Berkovich nanoindentation

被引:16
作者
Wang, Zhanfeng [1 ]
Zhang, Junjie [1 ]
Ma, Anxin [2 ]
Hartmaier, Alexander [3 ]
Yan, Yongda [1 ]
Sun, Tao [1 ]
机构
[1] Harbin Inst Technol, Ctr Precis Engn, Harbin 150001, Peoples R China
[2] Tecnogetafe, IMDEA Mat Inst, Calle Eric Kandel 2, Madrid 28906, Spain
[3] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44780 Bochum, Germany
关键词
Nanoindentation; Single crystalline; Copper; Indentation size effect; Plastic zone size; Crystal plasticity; Finite element; Simulation; STRAIN GRADIENT PLASTICITY; INDENTATION SIZE; DISLOCATION DENSITY; METALLIC MATERIALS; WEDGE INDENTATION; GRAIN-SIZE; DEFORMATION; MICROHARDNESS; ORIENTATION; NANO;
D O I
10.1016/j.mtcomm.2020.101314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aiming at revealing plastic deformation mechanisms of nanoindentation tests, we investigate the crystallographic orientation-influenced indentation size effect in the Berkovich nanoindentation tests of single crystalline copper, by using the nonlocal crystal plasticity finite element approach and specifically designed experiments. In our simulation model of nanoindentation, a new geometrically necessary dislocation density-based crystal plasticity model is proposed, and the utilized model parameters are calibrated by fitting the measured load-displacement curves of indentation tests. Then the size of plastic zone of indentation tests is defined by the surface pile-up profile, i.e. the diameter of a circle consisting of material points with half of maximum pile-up height. It is found that the modified plastic zone model incorporated with the newly developed scaling factor provides good predication of the indentation depth-dependent hardness of single crystalline copper.
引用
收藏
页数:10
相关论文
共 46 条
[11]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[12]   Instrumented Indentation Test in the Nano-range: Performances Comparison of Testing Machines Calibration Methods [J].
Galetto M. ;
Maculotti G. ;
Genta G. ;
Barbato G. ;
Levi R. .
Nanomanufacturing and Metrology, 2019, 2 (02) :91-99
[13]   Determination of dislocation density from hardness measurements in metals [J].
Graca, S. ;
Colaco, R. ;
Carvalho, R. A. ;
Vilar, R. .
MATERIALS LETTERS, 2008, 62 (23) :3812-3814
[14]   A gradient theory of small-deformation, single-crystal plasticity that accounts for GND-induced interactions between slip systems [J].
Gurtin, Morton E. ;
Ohno, Nobutada .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (02) :320-343
[15]   Mechanism-based strain gradient crystal plasticity - I. Theory [J].
Han, CS ;
Gao, HJ ;
Huang, YG ;
Nix, WD .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (05) :1188-1203
[16]   CONSTITUTIVE ANALYSIS OF ELASTIC-PLASTIC CRYSTALS AT ARBITRARY STRAIN [J].
HILL, R ;
RICE, JR .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1972, 20 (06) :401-+
[18]   Application of small-scale testing for investigation of ion-beam-irradiated materials [J].
Kiener, Daniel ;
Minor, Andrew M. ;
Anderoglu, Osman ;
Wang, Yongqiang ;
Maloy, Stuart A. ;
Hosemann, Peter .
JOURNAL OF MATERIALS RESEARCH, 2012, 27 (21) :2724-2736
[19]   On the formulations of higher-order strain gradient crystal plasticity models [J].
Kuroda, Mitsutoshi ;
Tvergaard, Viggo .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (04) :1591-1608
[20]   High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: Geometrically necessary dislocation densities [J].
Kysar, Jeffrey W. ;
Gan, Yong X. ;
Morse, Timothy L. ;
Chen, Xi ;
Jones, Milton E. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (07) :1554-1573