On the crystallographic anisotropy of plastic zone size in single crystalline copper under Berkovich nanoindentation

被引:16
作者
Wang, Zhanfeng [1 ]
Zhang, Junjie [1 ]
Ma, Anxin [2 ]
Hartmaier, Alexander [3 ]
Yan, Yongda [1 ]
Sun, Tao [1 ]
机构
[1] Harbin Inst Technol, Ctr Precis Engn, Harbin 150001, Peoples R China
[2] Tecnogetafe, IMDEA Mat Inst, Calle Eric Kandel 2, Madrid 28906, Spain
[3] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44780 Bochum, Germany
关键词
Nanoindentation; Single crystalline; Copper; Indentation size effect; Plastic zone size; Crystal plasticity; Finite element; Simulation; STRAIN GRADIENT PLASTICITY; INDENTATION SIZE; DISLOCATION DENSITY; METALLIC MATERIALS; WEDGE INDENTATION; GRAIN-SIZE; DEFORMATION; MICROHARDNESS; ORIENTATION; NANO;
D O I
10.1016/j.mtcomm.2020.101314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aiming at revealing plastic deformation mechanisms of nanoindentation tests, we investigate the crystallographic orientation-influenced indentation size effect in the Berkovich nanoindentation tests of single crystalline copper, by using the nonlocal crystal plasticity finite element approach and specifically designed experiments. In our simulation model of nanoindentation, a new geometrically necessary dislocation density-based crystal plasticity model is proposed, and the utilized model parameters are calibrated by fitting the measured load-displacement curves of indentation tests. Then the size of plastic zone of indentation tests is defined by the surface pile-up profile, i.e. the diameter of a circle consisting of material points with half of maximum pile-up height. It is found that the modified plastic zone model incorporated with the newly developed scaling factor provides good predication of the indentation depth-dependent hardness of single crystalline copper.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Interpretation of the size effects in micropillar compression by a strain gradient crystal plasticity theory [J].
Bittencourt, Eduardo .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 116 :280-296
[2]   On the effects of hardening models and lattice rotations in strain gradient crystal plasticity simulations [J].
Bittencourt, Eduardo .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 108 :169-185
[3]   The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations [J].
Britton, T. B. ;
Liang, H. ;
Dunne, F. P. E. ;
Wilkinson, A. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2115) :695-719
[4]   Spherical indentation of copper: Crystal plasticity vs experiment [J].
Cackett, Alexandra J. ;
Hardie, Chris D. ;
Lim, Joven J. H. ;
Tarleton, Edmund .
MATERIALIA, 2019, 7
[5]   Geometrically necessary dislocation density measurements at a grain boundary due to wedge indentation into an aluminum bicrystal [J].
Dahlberg, C. F. O. ;
Saito, Y. ;
Oztop, M. S. ;
Kysar, J. W. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 105 :131-149
[6]   Indentation size effect in metallic materials:: Correcting for the size of the plastic zone [J].
Durst, K ;
Backes, B ;
Göken, M .
SCRIPTA MATERIALIA, 2005, 52 (11) :1093-1097
[7]   Indentation size effect in metallic materials:: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations [J].
Durst, Karsten ;
Backes, Bjoern ;
Franke, Oliver ;
Goeken, Mathias .
ACTA MATERIALIA, 2006, 54 (09) :2547-2555
[8]   Indentation size effect in polycrystalline FCC metals [J].
Elmustafa, AA ;
Stone, DS .
ACTA MATERIALIA, 2002, 50 (14) :3641-3650
[9]   Indentation size effects in spherical nanoindentation analyzed by experiment and non-local crystal plasticity [J].
Engels, J. K. ;
Gao, S. ;
Amin, W. ;
Biswas, A. ;
Kostka, A. ;
Vajragupta, N. ;
Hartmaier, A. .
MATERIALIA, 2018, 3 :21-30
[10]   Indentation size effect in MgO [J].
Feng, G ;
Nix, WD .
SCRIPTA MATERIALIA, 2004, 51 (06) :599-603