On α-Migrativity of Fuzzy Implications and the Generalised Laws of Importation

被引:1
作者
Baczynski, Michal [1 ]
Jayaram, Balasubramaniam [2 ]
Mesiar, Radko [3 ]
机构
[1] Univ Silesia Katowice, Inst Math, Bankowa 14, PL-40007 Katowice, Poland
[2] Indian Inst Technol Hyderabad, Dept Math, Hyderabad 502285, Telangana, India
[3] Slovak Univ Technol Bratislava, Fac Civil Engn, Radlinskeho 11, Bratislava 81005, Slovakia
来源
2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS) | 2018年
关键词
Fuzzy connectives; T-norm; fuzzy implication; law of importation; alpha-migrativity; NORMS;
D O I
10.1109/SCIS-ISIS.2018.00101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we discuss the law of alpha-migrativity as applied to fuzzy implication functions in a meaningful way. A generalisation of this law leads us to pexider-type generalisations of the law of importation, viz., the generalised law of importation I(C(alpha, x), y) = I(x, J (alpha, y)) (GLI) and the generalised cross-law of importation I (C (alpha, x), y) = J (x, I (alpha, y)) (CLI), where C is a generalised conjunction. We firstly show that the satisfaction of law of importation by the pairs (C, I) and/or (C, J) does not necessarily lead to the satisfaction of (GLI). Hence, we study the conditions under which these three laws may be related.
引用
收藏
页码:581 / 586
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1960, ACTA MATH ACAD SCI H, DOI 10.1007/BF02020630
[2]  
Baczynski M, 2008, STUD FUZZ SOFT COMP, V231, P1
[3]   A generalization of the migrativity property of aggregation functions [J].
Bustince, H. ;
De Baets, B. ;
Fernandez, J. ;
Mesiar, R. ;
Montero, J. .
INFORMATION SCIENCES, 2012, 191 :76-85
[4]   Migrativity of aggregation functions [J].
Bustince, H. ;
Montero, J. ;
Mesiar, R. .
FUZZY SETS AND SYSTEMS, 2009, 160 (06) :766-777
[5]   A note on the convex combinations of triangular norms [J].
Durante, Fabrizio ;
Sarkoci, Peter .
FUZZY SETS AND SYSTEMS, 2008, 159 (01) :77-80
[6]   Supermigrativity of aggregation functions [J].
Durante, Fabrizio ;
Ricci, Roberto Ghiselli .
FUZZY SETS AND SYSTEMS, 2018, 335 :55-66
[7]   On continuous triangular norms that are migrative [J].
Fodor, J. ;
Rudas, I. J. .
FUZZY SETS AND SYSTEMS, 2007, 158 (15) :1692-1697
[8]   An extension of the migrative property for triangular norms [J].
Fodor, J. ;
Rudas, I. J. .
FUZZY SETS AND SYSTEMS, 2011, 168 (01) :70-80
[9]   Cross-migrative triangular norms [J].
Fodor, Janos ;
Klement, Erich Peter ;
Mesiar, Radko .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2012, 27 (05) :411-428
[10]  
Klement E. P., 2000, TRENDS LOGIC, V8