Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients

被引:143
作者
Kong, JungHo [1 ]
Lee, Heetak [1 ]
Kim, Donghyo [1 ]
Han, Seong Kyu [1 ]
Ha, Doyeon [1 ]
Shin, Kunyoo [1 ,2 ]
Kim, Sanguk [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea
[2] Yonsei Univ, Inst Convergence Sci, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
BH3-ONLY PROTEINS; CANCER; SENSITIVITY; 5-FLUOROURACIL; MECHANISMS; SIGNATURES; GENOMICS; REVEALS; BASAL;
D O I
10.1038/s41467-020-19313-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. However, current machine-learning-based predictions of drug response often fail to identify robust translational biomarkers from preclinical models. Here, we present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data derived from three-dimensional organoid culture models. The biomarkers identified by our approach accurately predict the drug responses of 114 colorectal cancer patients treated with 5-fluorouracil and 77 bladder cancer patients treated with cisplatin. We further confirm our biomarkers using external transcriptomic datasets of drug-sensitive and -resistant isogenic cancer cell lines. Finally, concordance analysis between the transcriptomic biomarkers and independent somatic mutation-based biomarkers further validate our method. This work presents a method to predict cancer patient drug responses using pharmacogenomic data derived from organoid models by combining the application of gene modules and network-based approaches. Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data.
引用
收藏
页数:13
相关论文
共 79 条
[1]   TANDEM: a two-stage approach to maximize interpretability of drug response models based on multiple molecular data types [J].
Aben, Nanne ;
Vis, Daniel J. ;
Michaut, Magali ;
Wesseis, Lodewyk F. A. .
BIOINFORMATICS, 2016, 32 (17) :413-420
[2]   Exploiting evolutionary steering to induce collateral drug sensitivity in cancer [J].
Acar, Ahmet ;
Nichol, Daniel ;
Fernandez-Mateos, Javier ;
Cresswell, George D. ;
Barozzi, Iros ;
Hong, Sung Pil ;
Trahearn, Nicholas ;
Spiteri, Inmaculada ;
Stubbs, Mark ;
Burke, Rosemary ;
Stewart, Adam ;
Caravagna, Giulio ;
Werner, Benjamin ;
Vlachogiannis, Georgios ;
Maley, Carlo C. ;
Magnani, Luca ;
Valeri, Nicola ;
Banerji, Udai ;
Sottoriva, Andrea .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Proximal Pathway Enrichment Analysis for Targeting Comorbid Diseases via Network Endopharmacology [J].
Aguirre-Plans, Joaquim ;
Pinero, Janet ;
Menche, Joerg ;
Sanz, Ferran ;
Furlong, Laura I. ;
Schmidt, Harald H. H. W. ;
Oliva, Baldo ;
Guney, Emre .
PHARMACEUTICALS, 2018, 11 (03)
[4]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[5]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122
[6]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[7]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[8]   Network-guided modeling allows tumor-type independent prediction of sensitivity to all-trans-retinoic acid [J].
Bolis, M. ;
Garattini, E. ;
Paroni, G. ;
Zanetti, A. ;
Kurosaki, M. ;
Castrignano, T. ;
Garattini, S. K. ;
Biancardi, F. ;
Barzago, M. M. ;
Gianni, M. ;
Terao, M. ;
Pattini, L. ;
Fratelli, M. .
ANNALS OF ONCOLOGY, 2017, 28 (03) :611-621
[9]   Do predictive signatures really predict response to cancer chemotherapy? [J].
Borst, Piet ;
Wessels, Lodewyk .
CELL CYCLE, 2010, 9 (24) :4836-4840
[10]   A genome-wide positioning systems network algorithm for in silico drug repurposing [J].
Cheng, Feixiong ;
Lu, Weiqiang ;
Liu, Chuang ;
Fang, Jiansong ;
Hou, Yuan ;
Handy, Diane E. ;
Wang, Ruisheng ;
Zhao, Yuzheng ;
Yang, Yi ;
Huang, Jin ;
Hill, David E. ;
Vidal, Marc ;
Eng, Charis ;
Loscalzo, Joseph .
NATURE COMMUNICATIONS, 2019, 10 (1)