Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation

被引:95
作者
Aparicio, Jesus F. [1 ]
Barreales, Eva G. [1 ]
Payero, Tamara D. [1 ]
Vicente, Claudia M. [2 ]
de Pedro, Antonio [1 ]
Santos-Aberturas, Javier [3 ]
机构
[1] Univ Leon, Fac Biol, Area Microbiol, E-24071 Leon, Spain
[2] Univ Lorraine, UMR 1128, INRA, Dynam Genomes & Adaptat Microbienne, F-54506 Vandoeuvre Les Nancy, France
[3] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
关键词
Antifungal agent; Cheese; Gene regulation; Keratitis; Metabolic engineering; Polyene macrolide; Preservative E-235; Streptomyces; POLYENE MACROLIDE ANTIBIOTICS; STREPTOMYCES-CHATTANOOGENSIS L10; NATAMYCIN PRODUCTION; ANTIFUNGAL ACTIVITY; POSITIVE REGULATOR; AMPHOTERICIN-B; GENE-CLUSTER; PI-FACTOR; ENGINEERED BIOSYNTHESIS; NIKKOMYCIN BIOSYNTHESIS;
D O I
10.1007/s00253-015-7077-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Pimaricin (natamycin) is a small polyene macrolide antibiotic used worldwide. This efficient antimycotic and antiprotozoal agent, produced by several soil bacterial species of the genus Streptomyces, has found application in human therapy, in the food and beverage industries and as pesticide. It displays a broad spectrum of activity, targeting ergosterol but bearing a particular mode of action different to other polyene macrolides. The biosynthesis of this only antifungal agent with a GRAS status has been thoroughly studied, which has permitted the manipulation of producers to engineer the biosynthetic gene clusters in order to generate several analogues. Regulation of its production has been largely unveiled, constituting a model for other polyenes and setting the leads for optimizing the production of these valuable compounds. This review describes and discusses the molecular genetics, uses, mode of action, analogue generation, regulation and strategies for increasing pimaricin production yields.
引用
收藏
页码:61 / 78
页数:18
相关论文
共 141 条
[41]   METHYL-ESTERS OF TRIMETHYLAMMONIUM DERIVATIVES OF POLYENE MACROLIDE ANTIBIOTICS [J].
FALKOWSKI, L ;
STEFANSKA, B ;
ZIELINSKI, J ;
BYLEC, E ;
GOLIK, J ;
KOLODZIEJCZYK, P ;
BOROWSKI, E .
JOURNAL OF ANTIBIOTICS, 1979, 32 (10) :1080-1081
[42]  
Farid MA, 2000, J BASIC MICROB, V40, P157, DOI 10.1002/1521-4028(200007)40:3<157::AID-JOBM157>3.0.CO
[43]  
2-1
[44]   The formation of amphotericin B ion channels in lipid bilayers [J].
Fujii, G ;
Chang, JE ;
Coley, T ;
Steere, B .
BIOCHEMISTRY, 1997, 36 (16) :4959-4968
[45]  
GOLDING BT, 1966, TETRAHEDRON LETT, P3551
[46]   Characterisation of a natural variant of the -butyrolactone signalling receptor [J].
Marco Gottelt ;
Andrew Hesketh ;
Robert Bunet ;
Pranav Puri ;
Eriko Takano .
BMC Research Notes, 5 (1)
[47]   LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor [J].
Guerra, Susana M. ;
Rodriguez-Garcia, Antonio ;
Santos-Aberturas, Javier ;
Vicente, Claudia M. ;
Payero, Tamara D. ;
Martin, Juan F. ;
Aparicio, Jesus F. .
PLOS ONE, 2012, 7 (02)
[48]   Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: Nisin and natamycin migration, efficiency in cheese packaging [J].
Hanusova, Kristyna ;
Stastna, Monika ;
Votavova, Lenka ;
Klaudisova, Kamila ;
Dobias, Jaroslav ;
Voldrich, Michal ;
Marek, Miroslav .
JOURNAL OF FOOD ENGINEERING, 2010, 99 (04) :491-496
[49]   SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN-sanO intergenic region in Streptomyces ansochromogenes [J].
He, Xihong ;
Li, Rui ;
Pan, Yuanyuan ;
Liu, Gang ;
Tan, Huarong .
MICROBIOLOGY-SGM, 2010, 156 :828-837
[50]   Multiple functions of sterols in yeast endocytosis [J].
Heese-Peck, A ;
Pichler, H ;
Zanolari, B ;
Watanabe, R ;
Daum, G ;
Riezman, H .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (08) :2664-2680