Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution

被引:208
|
作者
Dong, Haoran [1 ,2 ]
Zhang, Cong [1 ,2 ]
Deng, Junmin [1 ,2 ]
Jiang, Zhao [1 ,2 ]
Zhang, Lihua [1 ,2 ]
Cheng, Yujun [1 ,2 ]
Hou, Kunjie [1 ,2 ]
Tang, Lin [1 ,2 ]
Zeng, Guangming [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfidation; Nanoscale zero-valent iron; Ferrous sulfide; Dechlorination; TCE; ZEROVALENT IRON; REDUCTIVE DECHLORINATION; PHYSICOCHEMICAL TRANSFORMATION; SIMULATED GROUNDWATER; KINETICS; NANOPARTICLES; OXIDATION; WATER; REACTIVITY; PARTICLES;
D O I
10.1016/j.watres.2018.02.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sulfide-modified nanoscale zero-valent iron (S/NZVI) has been considered as an efficient material to degrade trichloroethylene (TCE) in groundwater. However, some critical factors influencing the dechlorination of TCE by S/NZVI have not been investigated clearly. In this study, the effects of Fe/S molar ratio, initial pH, dissolved oxygen and particle aging on TCE dechlorination by S/NZVI (using dithionite as sulfidation reagent) were studied. Besides, the feasibility of reactivation of the aged-NZVI by sulfidation treatment was looked into. The results show that the Fe/S molar ratio and initial pH significantly influenced the TCE dechlorination, and a higher TCE dechlorination was observed at Fe/S molar ratio of similar to 60 under alkaline condition. Spectroscopic analyses demonstrate that the enhanced TCE dechlorination was associated with the presence of FeS on the surface of S/NZVI. Dissolved oxygen had little effect on TCE dechlorination by S/NZVI, revealing that the FeS layer could be able to alleviate the surface passivation of NZVI caused by oxidation. Aging of S/NZVI up to 10-20 d only slightly decreased the dechlorination efficiency of TCE. Although an obvious drop in dechorination efficiency was observed for the S/NZVI aged for 30 d, it still exhibited a higher reactivity than the bare NZVI. This indicates that sulfidation of NZVI did prolong its lifetime. Additionally, sulfidation treatment was used to reactivate the aged NZVI, and the results show that the reactivated NZVI even had higher reactivity than the fresh NZVI, suggesting that sulfidation treatment would be a promising method to reactivate the aged NZVI. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Li, Xiaoyan
    Zhang, Ming
    Liu, Yibao
    Li, Xun
    Liu, Yunhai
    Hua, Rong
    He, Caiting
    WATER QUALITY EXPOSURE AND HEALTH, 2013, 5 (01): : 31 - 40
  • [42] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron
    Yin, Yanan
    Wang, Jianlong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5864 - 5868
  • [43] Removal of U(VI) from aqueous solution by nanoscale zero-valent iron
    Li, X.-Y., 1600, Atomic Energy Press (34):
  • [44] Activation of H2O2 via sulfide-modified nanoscale zero-valent iron for tetracycline removal: Performance and mechanism
    Sun, Yu
    Xia, Lu
    Wang, Jiayue
    Zhao, Chenyu
    Liao, Qianjiahua
    Chen, Jianqiu
    Shang, Jingge
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [45] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Xiaoyan Li
    Ming Zhang
    Yibao Liu
    Xun Li
    Yunhai Liu
    Rong Hua
    Caiting He
    Water Quality, Exposure and Health, 2013, 5 : 31 - 40
  • [46] Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron
    Wang, Yuwei
    Gao, Jingfeng
    Duan, Wanjun
    Zhang, Wenzhi
    Zhao, Yifan
    Liu, Jie
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 400
  • [47] Degradation of the antibiotic ornidazole in aqueous solution by using nanoscale zero-valent iron particles: kinetics, mechanism, and degradation pathway
    Zhang, Yanchang
    Zhao, Lin
    Yang, Yongkui
    Sun, Peizhe
    RSC ADVANCES, 2018, 8 (61) : 35062 - 35072
  • [48] Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: Influencing factors and degradation intermediates
    Wang, Lin
    Yang, Juan
    Li, Yongmei
    Lv, Juan
    Zou, Jinte
    CHEMICAL ENGINEERING JOURNAL, 2016, 284 : 1058 - 1067
  • [49] Ca(OH)2 coated nanoscale zero-valent iron as a persulfate activator for the degradation of sulfamethazine in aqueous solution
    Deng, Junmin
    Dong, Haoran
    Li, Long
    Wang, Yaoyao
    Ning, Qin
    Wang, Bin
    Zeng, Guangming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 227
  • [50] Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane
    Kim, Hojeong
    Hong, Hye-Jin
    Lee, You-Jin
    Shin, Hyun-Jae
    Yang, Ji-Won
    DESALINATION, 2008, 223 (1-3) : 212 - 220