Biorefinery: The Production of Isobutanol from Biomass Feedstocks

被引:19
作者
Su, Yide [1 ]
Zhang, Weiwei [1 ]
Zhang, Aili [1 ]
Shao, Wenju [1 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, 8 Guangrong Rd, Tianjin 300130, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 22期
关键词
isobutanol; biorefinery; metabolic engineering; biomass utilization; KETOL-ACID REDUCTOISOMERASE; CORYNEBACTERIUM-GLUTAMICUM; CLOSTRIDIUM-THERMOCELLUM; LIGNOCELLULOSIC BIOMASS; BIOFUEL PRODUCTION; ETHANOL-PRODUCTION; GROWTH-INHIBITION; ESCHERICHIA-COLI; N-BUTANOL; XYLOSE;
D O I
10.3390/app10228222
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Environmental issues have prompted the vigorous development of biorefineries that use agricultural waste and other biomass feedstock as raw materials. However, most current biorefinery products are cellulosic ethanol. There is an urgent need for biorefineries to expand into new bioproducts. Isobutanol is an important bulk chemical with properties that are close to gasoline, making it a very promising biofuel. The use of microorganisms to produce isobutanol has been extensively studied, but there is still a considerable gap to achieving the industrial production of isobutanol from biomass. This review summarizes current metabolic engineering strategies that have been applied to biomass isobutanol production and recent advances in the production of isobutanol from different biomass feedstocks.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 93 条
[1]   Bacterial production of isobutanol without expensive reagents [J].
Akita, Hironaga ;
Nakashima, Nobutaka ;
Hoshino, Tamotsu .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (02) :991-999
[2]   Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products [J].
Amoah, Jerome ;
Kahar, Prihardi ;
Ogino, Chiaki ;
Kondo, Akihiko .
BIOTECHNOLOGY JOURNAL, 2019, 14 (06)
[3]   Distillation contra pervaporation: Comprehensive investigation of isobutanol-water separation [J].
Andre, Anita ;
Nagy, Tibor ;
Toth, Andras Jozsef ;
Haaz, Eniko ;
Fozer, Daniel ;
Tarjani, Janka Ariella ;
Mizsey, Peter .
JOURNAL OF CLEANER PRODUCTION, 2018, 187 :804-818
[4]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[5]   High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal [J].
Baez, Antonino ;
Cho, Kwang-Myung ;
Liao, James C. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 90 (05) :1681-1690
[6]   Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli [J].
Bastian, Sabine ;
Liu, Xiang ;
Meyerowitz, Joseph T. ;
Snow, Christopher D. ;
Chen, Mike M. Y. ;
Arnold, Frances H. .
METABOLIC ENGINEERING, 2011, 13 (03) :345-352
[7]   Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae [J].
Bengtsson, Oskar ;
Hahn-Hagerdal, Barbel ;
Gorwa-Grauslund, Marie F. .
BIOTECHNOLOGY FOR BIOFUELS, 2009, 2
[8]   Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production - A review [J].
Bilal, Muhammad ;
Iqbal, Hafiz M. N. ;
Hu, Hongbo ;
Wang, Wei ;
Zhang, Xuehong .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :436-447
[9]   Corynebacterium glutamicum Tailored for Efficient Isobutanol Production [J].
Blombach, Bastian ;
Riester, Tanja ;
Wieschalka, Stefan ;
Ziert, Christian ;
Youn, Jung-Won ;
Wendisch, Volker F. ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (10) :3300-3310
[10]   Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae [J].
Brat, Dawid ;
Boles, Eckhard .
FEMS YEAST RESEARCH, 2013, 13 (02) :241-244