An approximate method for numerical solution of fractional differential equations

被引:175
作者
Kumar, Pankaj [1 ]
Agrawal, Om Prakash [1 ]
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
关键词
fractional differential equation; Caputo derivative; fractional-order system;
D O I
10.1016/j.sigpro.2006.02.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a numerical solution scheme for a class of fractional differential equations (FDEs). In this approach, the FDEs are expressed in terms of Caputo type fractional derivative. Properties of the Caputo derivative allow one to reduce the FDE into a Volterra type integral equation. Once this is done, a number of numerical schemes developed for Volterra type integral equation can be applied to find numerical solution of FDEs. In this paper the total time is divided into a set of small intervals, and between two successive intervals the unknown functions are approximated using quadratic polynomials. These approximations are substituted into the transformed Volterra type equation to obtain a set of equations. Solution of these equations provides the solution of the FDE. The method is applied to solve two types of FDEs, linear and nonlinear. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is stable. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:2602 / 2610
页数:9
相关论文
共 47 条
[1]  
ACHAR BN, 2005, P 2005 ASME DES ENG
[2]   FRACTIONAL CALCULUS IN THE TRANSIENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1985, 23 (06) :918-925
[3]   FRACTIONAL CALCULUS - A DIFFERENT APPROACH TO THE ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1983, 21 (05) :741-748
[4]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[5]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[6]  
Carpinteri A., 1997, CISM courses and lect., P277
[7]   Multi-order fractional differential equations and their numerical solution [J].
Diethelm, K ;
Ford, NJ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) :621-640
[8]   Efficient solution of multi-term fractional differential equations using P(EC)mE methods [J].
Diethelm, K .
COMPUTING, 2003, 71 (04) :305-319
[9]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[10]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773