The C*-algebras of finitely aligned higher-rank graphs

被引:91
作者
Raeburn, I [1 ]
Sims, A [1 ]
Yeend, T [1 ]
机构
[1] Univ Newcastle, Dept Math, Newcastle, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
graph algebra; Cuntz-Krieger algebra; uniqueness;
D O I
10.1016/j.jfa.2003.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise the theory of Cuntz-Krieger families and graph algebras to the class of finitely aligned k-graphs. This class contains in particular all row-finite k-graphs. The Cuntz-Krieger relations for non-row-finite k-graphs look significantly different from the usual ones, and this substantially complicates the analysis of the graph algebra. We prove a gauge-invariant uniqueness theorem and a Cuntz-Krieger uniqueness theorem for the C*-algebras of finitely aligned k-graphs. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 240
页数:35
相关论文
共 15 条
[1]  
ADJI S, 1994, P AM MATH SOC, V122, P1133
[2]  
Bates T., 2000, NEW YORK J MATH, V6, P307
[3]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[4]  
Enomoto M., 1980, MATH JPN, V25, P435
[5]  
Fowler NJ, 1999, INDIANA U MATH J, V48, P155
[6]   The C*-algebras of infinite graphs [J].
Fowler, NJ ;
Laca, M ;
Raeburn, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2319-2327
[7]   Product systems over right-angled Artin semigroups [J].
Fowler, NJ ;
Sims, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (04) :1487-1509
[8]   Discrete product systems of Hilbert bimodules [J].
Fowler, NJ .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 204 (02) :335-375
[9]   Cuntz-Krieger algebras of directed graphs [J].
Kumjian, A ;
Pask, D ;
Raeburn, I .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 184 (01) :161-174
[10]  
Kumjian A., 2000, New York Journal of Mathematics, V6, P1