The Multi-Objective Multi-Vehicle Pickup and Delivery Problem with Time Windows

被引:22
作者
Grandinetti, L. [1 ]
Guerriero, F. [2 ]
Pezzella, F. [3 ]
Pisacane, O. [3 ]
机构
[1] Univ Calabria, Dipartimento Ingn Informat Modellist Elettron & S, I-87036 Arcavacata Di Rende, Italy
[2] Univ Calabria, Dipartimento Ingn Afeccan Energet Gestionale, I-87036 Cosenza, Italy
[3] Univ Politecn dells Marche, Dipartitmento Ingn Infbnnaz, I-60131 Ancona, Italy
来源
TRANSPORTATION: CAN WE DO MORE WITH LESS RESOURCES? - 16TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION - PORTO 2013 | 2014年 / 111卷
关键词
Multi-Objective Mathematical Programming; Vehicle Routing; Pickup and Delivery; epsilon-Constraint Method; VEHICLE-ROUTING PROBLEM; EXACT ALGORITHM; OPTIMIZATION; BRANCH; CUT;
D O I
10.1016/j.sbspro.2014.01.053
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The Single Objective Single Vehicle Pickup and Delivery Problem (SOSV-PDP) is a Vehicle Routing Problem (VRP)in which the vehicle, based at the depot, has to visit exactly once a set of customers with known demand. Each request specifies two locations: an origin for the picking and one for the delivery. The vehicle must start and finish at the depot and the total handled demand must not exceed its capacity. Moreover, for each request, the origin must precede the destination (precedence constraints). In the SOSV-PDP with Time Windows (SOSV-PDPTW), each request specifies also a time window. Therefore, the vehicle has to serve the customer within the time window (time window constraint). The Single Objective Multiple Vehicle-PDPTW (SOMV-PDPTW) is an extension of SOSV-PDPTW where customers are served by a fleet (usually homogeneous) of vehicles. Therefore, together with the precedencies, for each request, the origin and the destination have to belong to the same route (pairing constraints). In the traditional SOMV-PDPTW, only one objective is optimized (usually, the total travel cost); while, in the literature, few multi-objective MOMV-PDPTW exist that optimize at most three criteria simultaneously. The contribution of this paper consists in addressing the MOMV-PDPTW from both a modeling and methodological point of view. In fact, the MOMV-PDPTW is firstly modeled with the aim of optimizing the number of vehicles, the total travel cost and the longest travel cost, simultaneously; then, a two-step solution approach is proposed. In particular, in the first step, a set of feasible routes is generated by properly adapting some meta-heuristics proposed in literature for the SOMV-PDPTW, then, set partitioning optimization problems are solved within an c-constraint framework. More specifically, each set partitioning problem selects the routes from the feasible set, optimizing one criterion at time, constraining the remaining ones by appropriate upper bounds and satisfying customer requirements. Finally, the second step finds the set of efficient solutions for approximating the Pareto Fronts. Computational experiments, carried out on some instances generated in literature, show that our approach determines good quality Efficient Pareto Fronts (in terms of number of efficient solutions) and also provides well-diversified efficient sets. This last aspect is properly evaluated by computing the Spread metric on each of the instances. (C) 2013 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 16 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 2001, MultiObjective Optimization Using Evolutionary Algorithms
[3]  
Araque J. R., 1994, Annals of Operations Research, V50, P37, DOI 10.1007/BF02085634
[4]   An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation [J].
Baldacci, R ;
Hadjiconstantinou, E ;
Mingozzi, A .
OPERATIONS RESEARCH, 2004, 52 (05) :723-738
[5]   An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits [J].
Berube, Jean-Francois ;
Gendreau, Michel ;
Potvin, Jean-Yves .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 194 (01) :39-50
[6]  
Bramel J., 2000, VEHICLE ROUTING PROB
[7]  
Chankong Vira., 1983, N HOLLAND SERIES SYS
[8]   A branch-and-cut algorithm for the dial-a-ride problem [J].
Cordeau, Jean-Francois .
OPERATIONS RESEARCH, 2006, 54 (03) :573-586
[9]   Multi-Objective Optimization for the m-PDPTW: Aggregation Method With Use of Genetic Algorithm and Lower Bounds [J].
Dridi, I. Harbaoui ;
Kammarti, R. ;
Ksouri, M. ;
Borne, P. .
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2011, 6 (02) :246-257
[10]   An optimization-based heuristic for the Multi-objective Undirected Capacitated Arc Routing Problem [J].
Grandinetti, L. ;
Guerriero, F. ;
Lagana, D. ;
Pisacane, O. .
COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (10) :2300-2309