Multi-atlas and Gaussian Mixture Modeling Based Perirectal Fat Segmentation from CT Images

被引:0
作者
Ghose, Soumya [1 ]
Denham, Jim [2 ]
Ebert, Martin [3 ,4 ]
Kennedy, Angel [5 ]
Mitra, Jhimli [1 ]
Rose, Stephen [1 ]
Dowling, Jason [1 ]
机构
[1] CSIRO Computat Informat, 901-16 UQ Hlth Sci Bldg, Herston, Qld 4029, Australia
[2] Univ Newcastle, Sch Med & Publ Hlth, Callaghan, NSW 2308, Australia
[3] Sir Charles Gairdner Hosp, Radiat Oncol, Nedlands, WA 6009, Australia
[4] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia
[5] Sir Charles Gairdner Hosp, Radiat Oncol, Nedlands, WA 6009, Australia
来源
ABDOMINAL IMAGING: COMPUTATION AND CLINICAL APPLICATIONS | 2013年 / 8198卷
关键词
Multi-atlas; gaussian mixture modeling; computed tomography; MR-IMAGES; PROSTATE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate perirectal fat segmentation in CT images aids in estimating radiation dose delivered to the region of fat around the rectum during radiation therapy treatment of prostate cancer. Such a process is important in determining the resulting toxicity of the neighboring tissues. However automatic or semi-automatic segmentation of the perirectal fat in CT images is a challenging task due to inter patient anatomical variability, contrast variability and imaging artifacts. We propose a combined schema of multi-atlas and multi parametric Gaussian mixture modeling for perirectal fat segmentation in CT images. Multi-atlas based soft segmentation and multi parametric Gaussian mixture modeling aids in identifying the volume of interest (VOI). Thereafter expectation maximization (EM) based soft clustering of the intensities of the VOI refined with positional probabilities of the perirectal fat provides the segmentation of the perirectal fat. The proposed method achieves a mean sensitivity value of 0.88 +/- 0.07 and a mean specificity value of 0.998 +/- 0.001 with 5 patient datasets in a leave-one-patient-out validation framework. Qualitative results show a good approximation of the perirectal fat volume compared to the ground truth.
引用
收藏
页码:194 / 202
页数:9
相关论文
共 12 条
[1]  
[Anonymous], IEEE T MED IMAGING
[2]  
Australian Government, 2013, CANC AUSTR OV 2012
[3]   Patient Specific Prostate Segmentation in 3-D Magnetic Resonance Images [J].
Chandra, Shekhar S. ;
Dowling, Jason A. ;
Shen, Kai-Kai ;
Raniga, Parnesh ;
Pluim, Josien P. W. ;
Greer, Peter B. ;
Salvado, Olivier ;
Fripp, Jurgen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (10) :1955-1964
[4]  
Clinical Trials A.G., 2013, RAND ANDR DEPR RAD R
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information [J].
Klein, Stefan ;
van der Heide, Uulke A. ;
Lips, Irene M. ;
van Vulpen, Marco ;
Staring, Marius ;
Pluim, Josien P. W. .
MEDICAL PHYSICS, 2008, 35 (04) :1407-1417
[7]   Sparse Patch-Based Label Propagation for Accurate Prostate Localization in CT Images [J].
Liao, Shu ;
Gao, Yaozong ;
Lian, Jun ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (02) :419-434
[8]   Fast free-form deformation using graphics processing units [J].
Modat, Marc ;
Ridgway, Gerard R. ;
Taylor, Zeike A. ;
Lehmann, Manja ;
Barnes, Josephine ;
Hawkes, David J. ;
Fox, Nick C. ;
Ourselin, Sebastien .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 98 (03) :278-284
[9]   Reconstructing a 3D structure from serial histological sections [J].
Ourselin, S ;
Roche, A ;
Subsol, G ;
Pennec, X ;
Ayache, N .
IMAGE AND VISION COMPUTING, 2001, 19 (1-2) :25-31
[10]   Nonrigid registration using free-form deformations: Application to breast MR images [J].
Rueckert, D ;
Sonoda, LI ;
Hayes, C ;
Hill, DLG ;
Leach, MO ;
Hawkes, DJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (08) :712-721