Feature extraction in an ensemble of multiple local classifiers for fault diagnosis in industrial processes

被引:3
|
作者
Santi, Gustavo B. [1 ]
Assis, Arthur A. [1 ]
Rebli, Victor N. [2 ]
Ciarelli, Patrick M. [1 ]
Rauber, Thomas W. [2 ]
Munaro, Celso J. [1 ]
机构
[1] Univ Fed Espirito Santo, Lab Controle & Instrumentacao, Dept Engn Eletr, BR-29075910 Vitoria, ES, Brazil
[2] Univ Fed Espirito Santo, Nucleo Inferencia & Algoritmos, Dept Informat, BR-29075910 Vitoria, ES, Brazil
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 01期
基金
美国国家科学基金会;
关键词
Fault detection and diagnosis; feature extraction; classifier ensemble; Tennessee Eastman; RECONSTRUCTION-BASED CONTRIBUTION;
D O I
10.1016/j.ifacol.2019.06.077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a classification model for fault diagnosis. In a first stage, an unsupervised clustering algorithm discovers groups of potential fault classes. Subsequently, a specialized classifier is trained for each of the clusters, thus diminishing complexity and augmenting performance. The quality of the diagnosis is further improved by combining the classifiers in an ensemble. As a benchmark, data provided by the Tennessee Eastman chemical plant simulator was used, with promising results. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [1] Intelligent feature extraction for ensemble of classifiers
    Radtke, TVW
    Sabourin, R
    Wong, T
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 866 - 870
  • [2] Multisensor feature selector for fault diagnosis in industrial processes
    Jiang, Dongnian
    Ran, Huanhuan
    Zhao, Jinjiang
    Xu, Dezhi
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (11) : 5913 - 5926
  • [3] Transformer Fault Diagnosis Utilizing Feature Extraction and Ensemble Learning Model
    Xu, Gonglin
    Zhang, Mei
    Chen, Wanli
    Wang, Zhihui
    INFORMATION, 2024, 15 (09)
  • [4] Constructing Feature-based Ensemble Classifiers for Real-World Machines Fault Diagnosis
    de Oliveira, Marcelo V.
    Wandekokem, Estefhan D.
    Mendel, Eduardo
    Fabris, Fabio
    Varejao, Flavio M.
    Rauber, Thomas W.
    Batista, Rodrigo J.
    IECON 2010 - 36TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2010,
  • [5] An Ensemble Motor Bearing Fault Diagnosis Approach Based on LMD Feature Extraction
    Yang, Qing
    Chen, Lin
    Li, Ye
    Wu, Dongsheng
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [6] Induction Motor Fault Diagnosis Based on Ensemble Classifiers
    Yang, Xueliang
    Yan, Ruqiang
    Gao, Robert X.
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 814 - 818
  • [7] An Approach of Multiple Classifiers Ensemble Based on Feature Selection
    Chen, Bing
    Zhang, Hua-Xiang
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 390 - 394
  • [8] Model Fusion and Multiscale Feature Learning for Fault Diagnosis of Industrial Processes
    Liu, Kai
    Lu, Ningyun
    Wu, Feng
    Zhang, Ridong
    Gao, Furong
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6465 - 6478
  • [9] A Comparison of Two Feature-Based Ensemble Methods for Constructing Motor Pump Fault Diagnosis Classifiers
    de Oliveira, Marcelo V.
    Wandekokem, Estefhan D.
    Mendel, Eduardo
    Fabris, Fabio
    Varejao, Flavio M.
    Rauber, Thomas W.
    Batista, Rodrigo J.
    22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 1, 2010,
  • [10] A Novel Fault Diagnosis Method Based on Ensemble Feature Selection in The Industrial IoT Scenario
    Xu, Huadong
    Zhu, Minghua
    Xiao, Bo
    Qiu, Yunzhou
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 3324 - 3329