A Sliding Window Based Dynamic Spatiotemporal Modeling for Distributed Parameter Systems With Time-Dependent Boundary Conditions

被引:48
作者
Wang, Bing-Chuan [1 ,2 ]
Li, Han-Xiong [1 ]
机构
[1] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
[2] Cent S Univ, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
关键词
Distributed parameter systems (DPSs); forgetting factor; Karhunen-Loeve (KL); sliding window; time-dependent boundary conditions; EXTREME LEARNING-MACHINE; PARABOLIC PDE SYSTEMS; ORDER REDUCTION; DECOMPOSITION;
D O I
10.1109/TII.2018.2859444
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time/space separation based spatiotemporal modeling methods have been proven to be effective and efficient for modeling a class of distributed parameter systems (DPSs). However, these conventional methods may not work satisfactorily for DPSs with time-dependent boundary conditions. A sliding window based dynamic spatiotemporal modeling method is proposed for this kind of DPSs. First, the sliding window is appropriately designed to capture the most recent spatiotemporal data. Then, the conventional Karhunen-Loeve method can be used to construct the analytical model. Besides, a more general sliding window method can be achieved by using a forgetting factor to adjust different influence of the current and previous data. This analytical model can be utilized for online performance prediction. Simulation experiments on a benchmark and a battery with unknown boundary cooling have demonstrated the superior performance of the proposed method on the DPSs with time-dependent boundary conditions.
引用
收藏
页码:2044 / 2053
页数:10
相关论文
共 38 条
[1]   Inverse Double NARX Fuzzy Modeling for System Identification [J].
Ahn, Kyoung Kwan ;
Anh, Ho Pham Huy .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2010, 15 (01) :136-148
[2]  
[Anonymous], 2016, PATTERN RECOGNITION
[3]  
[Anonymous], 2006, 2006 IEEE INT C AC S
[4]  
Armaou A., 2001, International Journal of Applied Mathematics and Computer Science, V11, P287
[5]   Computation of empirical eigenfunctions and order reduction for nonlinear parabolic PDE systems with time-dependent spatial domains [J].
Armaou, A ;
Christofides, PD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) :2869-2874
[6]  
Back T., 1997, Handbook of Evolutionary Computation
[7]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[8]   Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems [J].
Cheng, C. M. ;
Dong, X. J. ;
Peng, Z. K. ;
Zhang, W. M. ;
Meng, G. .
NONLINEAR DYNAMICS, 2014, 78 (02) :1179-1192
[9]   Spectral-approximation-based intelligent modeling for distributed thermal processes [J].
Deng, H ;
Li, HX ;
Chen, GR .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (05) :686-700
[10]  
Du K.-L., 2014, Neural Networks and Statistical Learning, P299, DOI [DOI 10.1007/978-1-4471-5571-310, DOI 10.1007/978-1-4471-5571-3_10, 10.1007/978-1-4471-5571-310]