PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors

被引:45
作者
Mourragui, Soufiane [1 ,2 ]
Loog, Marco [2 ,3 ]
van de Wiel, Mark A. [4 ,5 ]
Reinders, Marcel J. T. [2 ,6 ]
Wessels, Lodewyk F. A. [1 ,2 ]
机构
[1] Netherlands Canc Inst, Oncode Inst, Div Mol Carcinogenesis, Computat Canc Biol, NL-1066 CX Amsterdam, Netherlands
[2] Delft Univ Technol, Fac EEMCS, Dept Intelligent Syst, NL-2628 CD Delft, Netherlands
[3] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[4] Univ Amsterdam, Med Ctr, Amsterdam Publ Hlth Res Inst, Dept Epidemiol & Biostat, NL-1081 HV Amsterdam, Netherlands
[5] Univ Cambridge, MRC Biostat Unit, Cambridge CB2 0SR, England
[6] Leiden Univ, Med Ctr, Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
关键词
XENOGRAFTS;
D O I
10.1093/bioinformatics/btz372
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Cell lines and patient-derived xenografts (PDXs) have been used extensively to understand the molecular underpinnings of cancer. While core biological processes are typically conserved, these models also show important differences compared to human tumors, hampering the translation of findings from pre-clinical models to the human setting. In particular, employing drug response predictors generated on data derived from pre-clinical models to predict patient response remains a challenging task. As very large drug response datasets have been collected for pre-clinical models, and patient drug response data are often lacking, there is an urgent need for methods that efficiently transfer drug response predictors from pre-clinical models to the human setting. Results We show that cell lines and PDXs share common characteristics and processes with human tumors. We quantify this similarity and show that a regression model cannot simply be trained on cell lines or PDXs and then applied on tumors. We developed PRECISE, a novel methodology based on domain adaptation that captures the common information shared amongst pre-clinical models and human tumors in a consensus representation. Employing this representation, we train predictors of drug response on pre-clinical data and apply these predictors to stratify human tumors. We show that the resulting domain-invariant predictors show a small reduction in predictive performance in the pre-clinical domain but, importantly, reliably recover known associations between independent biomarkers and their companion drugs on human tumors. Availability and implementation PRECISE and the scripts for running our experiments are available on our GitHub page (https://github.com/NKI-CCB/PRECISE). Supplementary information Supplementary data are available at Bioinformatics online.
引用
收藏
页码:I510 / I519
页数:10
相关论文
共 29 条
[1]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[2]   Genetic and transcriptional evolution alters cancer cell line drug response [J].
Ben-David, Uri ;
Siranosian, Benjamin ;
Ha, Gavin ;
Tang, Helen ;
Oren, Yaara ;
Hinohara, Kunihiko ;
Strathdee, Craig A. ;
Dempster, Joshua ;
Lyons, Nicholas J. ;
Burns, Robert ;
Nag, Anwesha ;
Kugener, Guillaume ;
Cimini, Beth ;
Tsvetkov, Peter ;
Maruvka, Yosef E. ;
O'Rourke, Ryan ;
Garrity, Anthony ;
Tubelli, Andrew A. ;
Bandopadhayay, Pratiti ;
Tsherniak, Aviad ;
Vazquez, Francisca ;
Wong, Bang ;
Birger, Chet ;
Ghandi, Mahmoud ;
Thorner, Aaron R. ;
Bittker, Joshua A. ;
Meyerson, Matthew ;
Getz, Gad ;
Beroukhim, Rameen ;
Golub, Todd R. .
NATURE, 2018, 560 (7718) :325-+
[3]   Patient-derived xenografts undergo mouse-specific tumor evolution [J].
Ben-David, Uri ;
Ha, Gavin ;
Tseng, Yuen-Yi ;
Greenwald, Noah F. ;
Oh, Coyin ;
Shih, Juliann ;
McFarland, James M. ;
Wong, Bang ;
Boehm, Jesse S. ;
Beroukhim, Rameen ;
Golub, Todd R. .
NATURE GENETICS, 2017, 49 (11) :1567-+
[4]   Molecular characterization of breast and lung tumors by integration of multiple data types with functional sparse-factor analysis [J].
Bismeijer, Tycho ;
Canisius, Sander ;
Wessels, Lodewyk F. A. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (10)
[5]  
Caseiro R, 2015, PROC CVPR IEEE, P3846, DOI 10.1109/CVPR.2015.7299009
[6]  
Csurka G, 2017, ADV COMPUT VIS PATT, P1, DOI 10.1007/978-3-319-58347-1_1
[7]   Domain Transfer Multiple Kernel Learning [J].
Duan, Lixin ;
Tsang, Ivor W. ;
Xu, Dong .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) :465-479
[8]   Unsupervised Visual Domain Adaptation Using Subspace Alignment [J].
Fernando, Basura ;
Habrard, Amaury ;
Sebban, Marc ;
Tuytelaars, Tinne .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :2960-2967
[9]   High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response [J].
Gao, Hui ;
Korn, Joshua M. ;
Ferretti, Stephane ;
Monahan, John E. ;
Wang, Youzhen ;
Singh, Mallika ;
Zhang, Chao ;
Schnell, Christian ;
Yang, Guizhi ;
Zhang, Yun ;
Balbin, O. Alejandro ;
Barbe, Stephanie ;
Cai, Hongbo ;
Casey, Fergal ;
Chatterjee, Susmita ;
Chiang, Derek Y. ;
Chuai, Shannon ;
Cogan, Shawn M. ;
Collins, Scott D. ;
Dammassa, Ernesta ;
Ebel, Nicolas ;
Embry, Millicent ;
Green, John ;
Kauffmann, Audrey ;
Kowa, Colleen ;
Leary, Rebecca J. ;
Lehar, Joseph ;
Liang, Ying ;
Loo, Alice ;
Lorenzana, Edward ;
McDonald, E. Robert, III ;
McLaughlin, Margaret E. ;
Merkin, Jason ;
Meyer, Ronald ;
Naylor, Tara L. ;
Patawaran, Montesa ;
Reddy, Anupama ;
Roeelli, Claudia ;
Ruddy, David A. ;
Salangsang, Fernando ;
Santacroce, Francesca ;
Singh, Angad P. ;
Tang, Yan ;
Tinetto, Walter ;
Tobler, Sonja ;
Velazquez, Roberto ;
Venkatesan, Kavitha ;
Von Arx, Fabian ;
Wang, Hui Qin ;
Wang, Zongyao .
NATURE MEDICINE, 2015, 21 (11) :1318-1325
[10]   Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal [J].
Gao, Jianjiong ;
Aksoy, Buelent Arman ;
Dogrusoz, Ugur ;
Dresdner, Gideon ;
Gross, Benjamin ;
Sumer, S. Onur ;
Sun, Yichao ;
Jacobsen, Anders ;
Sinha, Rileen ;
Larsson, Erik ;
Cerami, Ethan ;
Sander, Chris ;
Schultz, Nikolaus .
SCIENCE SIGNALING, 2013, 6 (269) :pl1