Branching and tree indexed random walks on fractals

被引:47
作者
Telcs, A
Wormald, NC
机构
[1] Int Business Sch, H-1021 Budapest, Hungary
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
关键词
branching process; random walk; branching random walk; fractal;
D O I
10.1017/S0021900200017812
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the recurrence of branching random walks on polynomially growing graphs. Amongst other things, we demonstrate the strong recurrence of tree indexed random walks determined by the resistance properties of spherically symmetric graphs. Several branching walk models are considered to show how the branching mechanism influences the recurrence behaviour.
引用
收藏
页码:999 / 1011
页数:13
相关论文
共 14 条
[1]  
BARLOW MT, 1990, P INT C MATH, P1025
[2]  
BARLOW MT, 1999, DIFFUSION FRACTALS
[3]   MARKOV-CHAINS INDEXED BY TREES [J].
BENJAMINI, I ;
PERES, Y .
ANNALS OF PROBABILITY, 1994, 22 (01) :219-243
[4]   TREE-INDEXED RANDOM-WALKS ON GROUPS AND 1ST PASSAGE PERCOLATION [J].
BENJAMINI, I ;
PERES, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (01) :91-112
[5]  
DOYLE PG, 1984, CARUS MATH MONOG, V22
[6]  
Durrett R, 1996, PROBABILITY THEORY E
[7]  
HAMBLEY B, 1991, J APPL PROBAB, V29, P499
[8]  
Harris TE, 1963, Die Grundlehren der mathematischen Wissenschaften, V119
[9]   STOCHASTIC DIFFERENCE-EQUATIONS AND GENERALIZED GAMMA DISTRIBUTIONS [J].
KLEBANER, FC .
ANNALS OF PROBABILITY, 1989, 17 (01) :178-188
[10]  
Rammal R, 1983, J PHYS LETT, V44, P13