Quasar candidates selection in the Virtual Observatory era

被引:42
作者
D'Abrusco, R. [1 ,2 ]
Longo, G. [1 ,3 ,4 ]
Walton, N. A. [2 ]
机构
[1] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[2] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[3] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy
[4] Ist Nazl Fis Nucl, Napoli Unit, Dept Phys Sci, I-80126 Naples, Italy
关键词
methods: data analysis; methods: observational; methods: statistical; catalogues; surveys; quasars: general; DIGITAL-SKY-SURVEY; HIGH-REDSHIFT QUASARS; LUMINOSITY FUNCTION; MULTICOLOR SURVEY; CATALOG; IV; MODEL;
D O I
10.1111/j.1365-2966.2009.14754.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a method for the photometric selection of candidate quasars in multiband surveys. The method makes use of a priori knowledge derived from a subsample of spectroscopic confirmed quasi-stellar objects (QSOs) to map the parameter space. The disentanglement of QSOs candidates and stars is performed in the colour space through the combined use of two algorithms, the probabilistic principal surfaces and the negative entropy clustering, which are for the first time used in an astronomical context. Both methods have been implemented in the VONEURAL package on the Astrogrid Virtual Observatory platform. Even though they belong to the class of the unsupervised clustering tools, the performances of the method are optimized by using the available sample of confirmed quasars and it is therefore possible to learn from any improvement in the available 'base of knowledge'. The method has been applied and tested on both optical and optical plus near-infrared data extracted from the visible Sloan Digital Sky Survey (SDSS) and infrared United Kingdom Infrared Deep Sky Survey-Large Area Survey public data bases. In all cases, the experiments lead to high values of both efficiency and completeness, comparable if not better than the methods already known in the literature. A catalogue of optical candidate QSOs extracted from the SDSS Data Release 7 Legacy photometric data set has been produced and is publicly available at the URL http://voneural.na.infn.it/qso.html.
引用
收藏
页码:223 / 262
页数:40
相关论文
共 43 条
[1]  
ABAZAJIAN K, 2008, APJS IN PRESS
[2]   The Sixth Data Release of the Sloan Digital Sky Survey [J].
Adelman-McCarthy, Jennifer K. ;
Agueros, Marcel A. ;
Allam, Sahar S. ;
Prieto, Carlos Allende ;
Anderson, Kurt S. J. ;
Anderson, Scott F. ;
Annis, James ;
Bahcall, Neta A. ;
Bailer-Jones, C. A. L. ;
Baldry, Ivan K. ;
Barentine, J. C. ;
Bassett, Bruce A. ;
Becker, Andrew C. ;
Beers, Timothy C. ;
Bell, Eric F. ;
Berlind, Andreas A. ;
Bernardi, Mariangela ;
Blanton, Michael R. ;
Bochanski, John J. ;
Boroski, William N. ;
Brinchmann, Jarle ;
Brinkmann, J. ;
Brunner, Robert J. ;
Budavari, Tamas ;
Carliles, Samuel ;
Carr, Michael A. ;
Castander, Francisco J. ;
Cinabro, David ;
Cool, R. J. ;
Covey, Kevin R. ;
Csabai, Istvan ;
Cunha, Carlos E. ;
Davenport, James R. A. ;
Dilday, Ben ;
Doi, Mamoru ;
Eisenstein, Daniel J. ;
Evans, Michael L. ;
Fan, Xiaohui ;
Finkbeiner, Douglas P. ;
Friedman, Scott D. ;
Frieman, Joshua A. ;
Fukugita, Masataka ;
Gansicke, Boris T. ;
Gates, Evalyn ;
Gillespie, Bruce ;
Glazebrook, Karl ;
Gray, Jim ;
Grebel, Eva K. ;
Gunn, James E. ;
Gurbani, Vijay K. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2008, 175 (02) :297-313
[3]  
[Anonymous], MEM S A IT
[4]  
[Anonymous], 2008, ASTROPHYS J SUPPL S
[5]  
Bishop C., 1999, Learning in Graphical Models, P371, DOI DOI 10.1017/S0140525X10000798
[6]  
Bishop Christopher M, 1995, Neural networks for pattern recognition
[7]   GTM: The generative topographic mapping [J].
Bishop, CM ;
Svensen, M ;
Williams, CKI .
NEURAL COMPUTATION, 1998, 10 (01) :215-234
[8]   The 2dF QSO Redshift Survey - I. The optical luminosity function of quasi-stellar objects [J].
Boyle, BJ ;
Shanks, T ;
Croom, SM ;
Smith, RJ ;
Miller, L ;
Loaring, N ;
Heymans, C .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 317 (04) :1014-1022
[9]   A unified model for probabilistic principal surfaces [J].
Chang, K ;
Ghosh, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (01) :22-41
[10]   Three-dimensional model-based object recognition and pose estimation using probabilistic principal surfaces [J].
Chang, KY ;
Ghosh, J .
APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING V, 2000, 3962 :192-203