On Gradient Shrinking Ricci Solitons with Radial Conditions

被引:0
作者
Yang, Fei [1 ]
Zhang, Liangdi [2 ]
Ma, Haiyan [3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[3] China Univ Geosci, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Rigidity; Classification; Gradient shrinking Ricci soliton; Radial conditions; RIGIDITY;
D O I
10.1007/s40840-020-01058-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove an n-dimensional radially flat gradient shrinking Ricci solitons with div(2)W(del f, del f) = 0 is rigid. Moreover, we show that a four-dimensional radially flat gradient shrinking Ricci soliton with div(2)W(+/-) (del(f), del(f)) = 0 is either Einstein or a finite quotient of R-4, S-2 x R-2 or S-3 x R.
引用
收藏
页码:2161 / 2174
页数:14
相关论文
共 17 条
[1]   ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1149-1169
[2]  
Cao HD, 2010, J DIFFER GEOM, V85, P175, DOI 10.4310/jdg/1287580963
[3]   Gradient Ricci solitons with vanishing conditions on Weyl [J].
Catino, G. ;
Mastrolia, P. ;
Monticelli, D. D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (01) :1-13
[4]  
Chen BL, 2009, J DIFFER GEOM, V82, P363, DOI 10.4310/jdg/1246888488
[5]   On Four-Dimensional Anti-self-dual Gradient Ricci Solitons [J].
Chen, Xiuxiong ;
Wang, Yuanqi .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) :1335-1343
[6]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[7]   ON GRADIENT RICCI SOLITONS WITH CONSTANT SCALAR CURVATURE [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (01) :369-378
[8]   Rigidity of shrinking Ricci solitons [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) :461-466
[9]   On Gradient Ricci Solitons [J].
Munteanu, Ovidiu ;
Sesum, Natasa .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :539-561
[10]   Noncompact shrinking four solitons with nonnegative curvature [J].
Naber, Aaron .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 :125-153