QUANTUM MECHANICS Mechanically detecting and avoiding the quantum fluctuations of a microwave field

被引:125
作者
Suh, J. [1 ,2 ]
Weinstein, A. J. [1 ,2 ]
Lei, C. U. [1 ,2 ]
Wollman, E. E. [1 ,2 ]
Steinke, S. K. [1 ,3 ]
Meystre, P. [3 ]
Clerk, A. A. [4 ]
Schwab, K. C. [1 ,2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[3] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
美国国家科学基金会;
关键词
BACK-ACTION; NANOMECHANICAL MOTION; GROUND-STATE; OSCILLATOR; RESONATOR; NOISE;
D O I
10.1126/science.1253258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 +/- 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 +/- 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
引用
收藏
页码:1262 / 1265
页数:4
相关论文
共 50 条
  • [31] COHERENT STATES IN GRAVITATIONAL QUANTUM MECHANICS
    Pedram, Pouria
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2013, 22 (02):
  • [32] Variational methods in relativistic quantum mechanics
    Esteban, Maria J.
    Lewin, Mathieu
    Sere, Eric
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (04) : 535 - 593
  • [33] Quantum mechanics of a simulated trihydrogen dication
    Glasser, M. L.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (08) : 2119 - 2127
  • [34] Macroscopic Quantum Mechanics in a Classical Spacetime
    Yang, Huan
    Miao, Haixing
    Lee, Da-Shin
    Helou, Bassam
    Chen, Yanbei
    PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [35] Revealing intrinsic domains and fluctuations of moire magnetism by a wide-field quantum microscope
    Huang, Mengqi
    Sun, Zeliang
    Yan, Gerald
    Xie, Hongchao
    Agarwal, Nishkarsh
    Ye, Gaihua
    Sung, Suk Hyun
    Lu, Hanyi
    Zhou, Jingcheng
    Yan, Shaohua
    Tian, Shangjie
    Lei, Hechang
    Hovden, Robert
    He, Rui
    Wang, Hailong
    Zhao, Liuyan
    Du, Chunhui Rita
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [36] Limits to Quantum Gate Fidelity from Near-Field Thermal and Vacuum Fluctuations
    Sun, Wenbo
    Bharadwaj, Sathwik
    Yang, Li-Ping
    Hsueh, Yu-Ling
    Wang, Yifan
    Jiao, Dan
    Rahman, Rajib
    Jacob, Zubin
    PHYSICAL REVIEW APPLIED, 2023, 19 (06)
  • [37] Detecting single gravitons with quantum sensing
    Tobar, Germain
    Manikandan, Sreenath K.
    Beitel, Thomas
    Pikovski, Igor
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [38] Double quantum dot as a probe of nonequilibrium charge fluctuations at the quantum point contact
    Chudnovskiy, A. L.
    PHYSICAL REVIEW B, 2009, 80 (08)
  • [39] On the gauge invariance of Wigner-Dunkl quantum mechanics in the presence of a constant magnetic field
    Junker, G.
    Dong, Shi-Hai
    Sedaghatnia, P.
    Chung, W. S.
    Hassanabadi, H.
    ANNALS OF PHYSICS, 2023, 454
  • [40] Quantum field tomography
    Steffens, A.
    Riofrio, C. A.
    Huebener, R.
    Eisert, J.
    NEW JOURNAL OF PHYSICS, 2014, 16