QUANTUM MECHANICS Mechanically detecting and avoiding the quantum fluctuations of a microwave field

被引:125
作者
Suh, J. [1 ,2 ]
Weinstein, A. J. [1 ,2 ]
Lei, C. U. [1 ,2 ]
Wollman, E. E. [1 ,2 ]
Steinke, S. K. [1 ,3 ]
Meystre, P. [3 ]
Clerk, A. A. [4 ]
Schwab, K. C. [1 ,2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[3] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
美国国家科学基金会;
关键词
BACK-ACTION; NANOMECHANICAL MOTION; GROUND-STATE; OSCILLATOR; RESONATOR; NOISE;
D O I
10.1126/science.1253258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 +/- 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 +/- 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
引用
收藏
页码:1262 / 1265
页数:4
相关论文
共 50 条
  • [21] Macroscopic quantum mechanics: theory and experimental concepts of optomechanics
    Chen, Yanbei
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
  • [22] Ultrafast quantum random number generation based on quantum phase fluctuations
    Xu, Feihu
    Qi, Bing
    Ma, Xiongfeng
    Xu, He
    Zheng, Haoxuan
    Lo, Hoi-Kwong
    OPTICS EXPRESS, 2012, 20 (11): : 12366 - 12377
  • [23] Quantum fluctuations inside a microcavity with a pair of quantum wells: linear regime
    Jabri, H.
    Eleuch, H.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (09) : 2317 - 2325
  • [24] Current fluctuations in quantum absorption refrigerators
    Segal, Dvira
    PHYSICAL REVIEW E, 2018, 97 (05):
  • [25] Multilayer microwave integrated quantum circuits for scalable quantum computing
    Brecht, Teresa
    Pfaff, Wolfgang
    Wang, Chen
    Chu, Yiwen
    Frunzio, Luigi
    Devoret, Michel H.
    Schoelkopf, Robert J.
    NPJ QUANTUM INFORMATION, 2016, 2
  • [26] Quantum fluctuations and cosmological particle creation from oscillating massive scalar field in two-mode quantum optical states
    Rathore, Meghna
    Dhayal, Renu
    Venkataratnam, K. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (16):
  • [27] Quantum fluctuations spatial mode profiler
    Gabaldon, Charris
    Barge, Pratik
    Cuozzo, Savannah L.
    Novikova, Irina
    Lee, Hwang
    Cohen, Lior
    Mikhailov, Eugeniy E.
    AVS QUANTUM SCIENCE, 2023, 5 (02):
  • [28] Quantum mechanics of a simulated trihydrogen dication
    M. L. Glasser
    Journal of Mathematical Chemistry, 2014, 52 : 2119 - 2127
  • [29] Convexity Relation for Energy in Quantum Mechanics
    Rebane, T. K.
    PHYSICS OF ATOMIC NUCLEI, 2009, 72 (09) : 1465 - 1474
  • [30] Matrix quantum mechanics from qubits
    Hartnoll, Sean A.
    Huijse, Liza
    Mazenc, Edward A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (01):