Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes

被引:106
作者
Lu, Ziyang [1 ,2 ,3 ]
Geng, Chuannan [2 ,3 ]
Yang, Huijun [1 ]
He, Ping [4 ,5 ]
Wu, Shichao [2 ,3 ]
Yang, Quan-Hong [2 ,3 ]
Zhou, Haoshen [1 ,4 ,5 ,6 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
[2] Tianjin Univ, Sch Chem Engn & Technol, Nanoyang Grp, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[4] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat & Technol, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
[6] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion battery; hard carbon anodes; step-by-step desolvation; high-rate; long life span; ION BATTERIES; SOLVATION SHEATH; LI+; ELECTROLYTE; PERFORMANCE; GRAPHITE;
D O I
10.1073/pnas.2210203119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hard carbon is regarded as the most promising anode material for sodium-ion (Na-ion) batteries, owing to its advantages of high abundance, low cost, and low operating potential. However, the rate capability and cycle life span of hard carbon anodes are far from satisfactory, severely hindering its industrial applications. Here, we demonstrate that the desolvation process defines the Na-ion diffusion kinetics and the formation of a solid electrolyte interface (SEI). The 3A zeolite molecular sieve film on the hard carbon is proposed to develop a step-by-step desolvation pathway that effectively reduces the high activation energy of the direct desolvation process. Moreover, step-by-step desolva-tion yields a thin and inorganic-dominated SEI with a lower activation energy for Na+ transport. As a result, it contributes to greatly improved power density and cycling stability for both ester and ether electrolytes. When the above insights are applied, the hard carbon anode achieves the longest life span and minimum capacity fading rate at all evaluated current densities. Moreover, with the increase in current densities, an improved plateau capacity ratio is observed. This step-by-step desolvation strategy comprehensively enhances various properties of hard carbon anodes, which provides the possibility of building practical Na-ion batteries with high power density, high energy density, and durability.
引用
收藏
页数:9
相关论文
共 63 条
[1]   Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J].
Bai, Panxing ;
Han, Xinpeng ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Yufei ;
Sun, Jie ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2020, 25 :324-333
[2]   High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte [J].
Bai, Songyan ;
Sun, Yang ;
Yi, Jin ;
He, Yibo ;
Qiao, Yu ;
Zhou, Haoshen .
JOULE, 2018, 2 (10) :2117-2132
[3]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[4]   Sustainable Lithium-Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low-Cost Molecular Sieve [J].
Chang, Zhi ;
Qiao, Yu ;
Yang, Huijun ;
Cao, Xin ;
Zhu, Xingyu ;
He, Ping ;
Zhou, Haoshen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (28) :15572-15581
[5]   Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries [J].
Chang, Zhi ;
Qiao, Yu ;
Yang, Huijun ;
Deng, Han ;
Zhu, Xingyu ;
He, Ping ;
Zhou, Haoshen .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :4122-4131
[6]   A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery [J].
Chang, Zhi ;
Qiao, Yu ;
Deng, Han ;
Yang, Huijun ;
He, Ping ;
Zhou, Haoshen .
JOULE, 2020, 4 (08) :1776-1789
[7]   Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization [J].
Chen, Dequan ;
Zhang, Wen ;
Luo, Kangying ;
Song, Yang ;
Zhong, Yanjun ;
Liu, Yuxia ;
Wang, Gongke ;
Zhong, Benhe ;
Wu, Zhenguo ;
Guo, Xiaodong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2244-2262
[8]   Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode [J].
Chen, Xiang ;
Shen, Xin ;
Li, Bo ;
Peng, Hong-Jie ;
Cheng, Xin-Bing ;
Li, Bo-Quan ;
Zhang, Xue-Qiang ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (03) :734-737
[9]   A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage [J].
Chen, Zhi ;
Wang, Taihong ;
Zhang, Ming ;
Cao, Guozhong .
SMALL, 2017, 13 (22)
[10]   Achieving high energy density and high power density with pseudocapacitive materials [J].
Choi, Christopher ;
Ashby, David S. ;
Butts, Danielle M. ;
DeBlock, Ryan H. ;
Wei, Qiulong ;
Lau, Jonathan ;
Dunn, Bruce .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :5-19