Bandwidth selection for functional time series prediction

被引:19
作者
Antoniadis, Anestis [2 ]
Paparoditis, Efstathios
Sapatinas, Theofanis [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Grenoble 1, F-38041 Grenoble, France
关键词
D O I
10.1016/j.spl.2008.10.028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a method to select the bandwidth for functional time series prediction. The idea underlying this method is to calculate the empirical risk of prediction using past segments of the observed series and to select as value of the bandwidth for prediction the bandwidth which minimizes this risk. We prove an oracle bound for the proposed bandwidth estimator showing that it mimics, asymptotically, the value of the bandwidth which minimizes the unknown theoretical risk of prediction based on past segments. We illustrate the usefulness of the proposed estimator in finite sample situations by means of a small simulation study and compare the resulting predictions with those obtained by a leave-one-curve-out cross-validation estimator used in the literature. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:733 / 740
页数:8
相关论文
共 9 条
[1]   Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes [J].
Antoniadis, A ;
Sapatinas, T .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) :133-158
[2]   A functional wavelet-kernel approach for time series prediction [J].
Antoniadis, Anestis ;
Paparoditis, Efstathios ;
Sapatinas, Theofanis .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :837-857
[3]   Spline approximation of the forecast of a first-order autoregressive functional process [J].
Besse, PC ;
Cardot, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (04) :467-487
[4]  
Bosq D, 2000, LECT NOTES STAT, V149
[5]  
Bosq D., 1998, LECT NOTES STAT, V110, DOI DOI 10.1007/978-1-4612-1718-3
[6]   The inclusion of exogenous variables in functional autoregressive ozone forecasting [J].
Damon, J ;
Guillas, S .
ENVIRONMETRICS, 2002, 13 (07) :759-774
[7]   Functional nonparametric model for time series: a fractal approach for dimension reduction [J].
Ferraty, F ;
Goia, A ;
Vieu, P .
TEST, 2002, 11 (02) :317-344
[8]  
Ferraty F., 2006, SPR S STAT
[9]   Nonparametric regression for functional data: Automatic smoothing parameter selection [J].
Rachdi, M. ;
Vieu, P. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (09) :2784-2801